Color shifts induced by time-varying chromatic context: Linear and nonlinear neural mechanisms

Steven K. Shevell ${ }^{1,2,3}$, Anthony D’Antona ${ }^{1,2}$ and Jens H. Christiansen ${ }^{1,4}$

${ }^{1}$ Psychology, University of Chicago, Illinois, USA
${ }^{2}$ Institute for Mind and Biology, University of Chicago, Illinois, USA
${ }^{3}$ Ophthalmology and Visual Science, University of Chicago, Illinois, USA
${ }^{4}$ Psychology, University of Copenhagen, Denmark

In natural viewing, an object often is seen against a chromatic background that varies in space and time. Spatially complex backgrounds have been studied extensively since the 'Mondrian' experiment of McCann, McKee \& Taylor (1976); temporally varying backgrounds, however, have received much less attention, despite the intriguing and now classical report that a temporally varying chromatic surround at a relatively low frequency ($\sim 4 \mathrm{~Hz}$) is seen to fluctuate in color itself but does not induce temporally varying color changes within a central test field (DeValois, Webster, DeValois, \& Lingelbach, 1986). The standard explanation is a cortical linear temporal filter that attenuates the chromatic inducing signal above 4 Hz . Experiments reviewed here require revising this account to include a nonlinear neural response and two linear temporal filters, one prior to and another following the nonlinear mechanism. The first linear filter is within pathways that maintain nearly independent $l=\mathrm{L} /(\mathrm{L}+\mathrm{M})$ and $s=\mathrm{S} /(\mathrm{L}+\mathrm{M})$ responses; the second linear filter acts on a higher-order chromatic representation that combines l and s responses. Experimental evidence includes (i) for a surround at temporal frequency f well above 4 Hz , a steady induced color shift that differs from the induced shift with a steady surround at the temporally-averaged surround chromaticity; (ii) for a surround modulated simultaneously at two temporal frequencies f_{1} and f_{2} both above 4 Hz , induced temporal variation within the central-test color at (iii) perceived temporal frequency $\left|f_{1}-f_{2}\right|$; (iv) for a 6 Hz chromatic surround that varies simultaneously along both l and s, a steady induced color shift that is altered by changing the relative phase of l and s stimulation (that is, simultaneous chromatic surround modulation from $+l$ to $-l$ and $+s$ to $-s$, with $+l$ coincident with $+s$ compared to $+l$ coincident with $-s$).

Supported by National Eye Institute grant EY-04802 (SS) and Inge Lehmann Grant of 1983 (JC).

