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Piéron’s law relates human reaction times to the intensity of a sensory stimulus by a power function. The
neural processes responsible for this nonlinear behavior are not understood. A simple neural model based on
the Brownian motion of spikes and information theory is presented. The model shows that Piéron’s law is a
transformation function in time. The shape of Piéron’s law is invariant and scales into the intensity-response
function of single neurons in a fractal-like process. The model also shows that Piéron’s law gives rise to 1 / f�

noise together with a high-frequency thermal noise limit. It is proposed that the biophysical origin of reaction
time variability is related to a form of noise-induced synchronization in weakly coupled neurons. The impli-
cations in visual-motor transduction are discussed.
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I. INTRODUCTION

Reaction time �RT� can be defined as the time elapsed
from the onset of a test stimulus until a response occurs �1�.
Applications are found in a wide variety of everyday tasks
such as performance in sports, and air and land navigation.
In the laboratory, RT has provided valuable information on
the neural conduction-time dynamics over more than a cen-
tury �1–3�. Two main aspects have been studied extensively.
First, the precise duration of a response is not constant. Spec-
tral methods have shown that the existence of variability
from trial to trial causes flicker noise or 1 / f� Fourier spectra
���1�, in most elementary cognitive processes �4–12�. This
type of fluctuation is an example of long-range dependence
in behavior. Current theories indicate that 1 / f�-type noise in
RT exhibit fractal scaling from intrinsic neural activity
�4,6,7,9–12�. Second, the expected mean RT value �tRT� de-
creases as the intensity of the physical signal increases �e.g.,
luminance, sound pressure, odorant concentration, etc.�
�1,2,13–18�. This is related to Piéron’s law �19� and includes
the sum of two separate processes as follows:

tRT = tRT0
+ �I−p, �1�

where tRT0
, �, and p are constants greater than zero, the

former representing the asymptotic plateau reached at higher
intensities �1,19�. Piéron’s law is an empirical psychophysi-
cal law. It has been verified in a wide range of experimental
conditions and multiple observers. The importance of
Piéron’s law lies in that it represents a general form of
sensory-motor transduction by a power law. Examples can be
found in each modality �visual, auditory, olfactory, tactile,
and gustatory�, and fractional values of p are often reported
�1,13,14,16,18–20�. Although some authors have examined
the relation between RT and stimulus intensity �1,17,21–25�,
it is usually without consideration of flicker noise. Experi-
mental power-law distributions have a close connection to a
form of symmetry found in nature called scale invariance.
Scale invariance maintains identical copies of the observed

quantities, i.e., they look similar over different scales
�21,26,27�, and is related to anisotropic or self-affine trans-
formations �26,27�. Power laws also occur in scale-free pro-
cesses, where no scale is typical �28,29�, and self-organized
critical phenomena among other generating mechanisms
�27,29,30�. These scaling properties can appear together with
fractal processes and 1 / f�-type noises. The theory of noise in
excitable systems explains, in part, the complexity of the
brain activity at both threshold �31� and suprathreshold lev-
els �32�. Noise affects the temporal dynamics and induces
pattern formation and synchronization in coupled oscillators
�31,32�. Neural synchronization is considered the fundamen-
tal coordination function at the large scale of integration
�33,34�. The study of Piéron’s law and reaction time variabil-
ity is therefore important to elucidate the macroscopic con-
sequences of the noisy neural activity, to better understand
sensory communications and to produce better human-
machine interfaces.

The aim of the present work is to examine the neural basis
of Piéron’s law by statistical physics. An analytical RT model
is presented. The RT model exemplifies the theme of linking
physiology and psychophysics, an issue that has not been
solved yet. It is proposed as a Brownian transport of neural
responses or spikes, showing that low-frequency flicker
noise contributes to Piéron’s law. In comparison with previ-
ous numerical simulations using neural networks in psycho-
physics �35,36�, the present approach uses the principles of
information theory as a general form of neural organization
and communication �20,37,38�. The RT model is included in
a theoretical framework that has been validated previously
with reference to psychophysical data on sensory adaptation
and threshold estimation and explains most of the empirical
laws of sensation and perception including Fechner’s, We-
ber’s, and Stevens’ laws �20,39,40�. The outline is organized
as follows. In the first section, I show an alternative deriva-
tion of Piéron’s law as a form of regularity in the spike trains
related to multiplicative neural noise �i.e., signal-dependent
intensity�. In the second section, I argue that Piéron’s law can
be considered as an emergent �fractal� function in those
noisy neural networks associated with sensory coding and
motor processing and defines a scaling relationship. I show
that both Piéron’s law and the intensity-response function in*jmanuel@fisica.uminho.pt
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single neurons, which is well fitted by Naka-Rushton or Hill-
like equations, are the same. That is, both arise from the
combination of flicker noise plus a white thermal noise limit,
with the reciprocal of the exponent p in Eq. �1� as the cor-
responding slope. Finally, I discuss the theory in relation to
the human visual-motor system.

II. RESULTS

A. Definition of the entropy H function

In the present model, information is related to the reduc-
tion of entropy or uncertainty. This entropy should not be
confused with the entropy of thermodynamics. Hence, the
information-theory entropy or H function is calculated from
the probability distribution function of the possible outcomes
in the sensory system. It is assumed that the sensory system
is represented by a neural network model, with peripheral
sensory receptors �e.g., photoreceptors in vision, inner-hair
cells in hearing, etc.�, connected to the cortex in a noisy
communication system or channel. Physical stimulation in-
duces uncertainty in both sensory receptors and human per-
ception. At both levels of processing, uncertainty is derived
from fluctuations in stimulus and is represented simulta-
neously by the same entropy equation �20�. In the simplest
case, the quantity of information transmitted per sensory
stimulus depends on the intensity I of the external physical
signal as well as the time t, i.e., H=H�I , t� �20�. This steady
signal is treated as a nonperiodic perturbation to the sensory
neural network during a finite period of time �e.g., a brief
sound, light flash, etc.�. The entropy equation links both neu-
ral and perceptual levels though an optimization procedure.
That is, the definition of RT is connected to the sensory
neural network containing a source encoder or decoder. This
is equivalent to asserting the existence of an informational
threshold so that RT can be defined as the time needed to
gather �H bits of information �20�.

�H = H�I,t0� − H�I,tRT� � 0. �2�

In contrast with previous models of RT �1,41�, initially �t
� t0� the information does not accrue but the statistical struc-
ture of the external signals is assumed redundant �37,38�. In
chronological order, t0 indicates the first stage and represents
the encoding time where H reaches a maximum, i.e., the
state of maximum uncertainty or equivalently, maximum loss
of information and minimum redundancy. tRT is the required
time to react �or RT�, representing the final state of uncer-
tainty that produces a gain of information of �H�0. Hence,
the existence of a threshold device is linked with a transfer of
information but only after the signal is decoded �20�. The
transfer of information defined in Eq. �2� is evaluated during
the temporal dynamics of the sensory neural network. Al-
though this noisy communication channel contains nonlinear
effects, they are considered relatively small and do not domi-
nate over the time elapsed by the impulses or spikes through
the nerve fibers �equivalently, short propagation distances�.
This affords the opportunity to treat the sensory network on
the basis of the standard linear channel model defined by
Shannon consisting of additive Gaussian noise. However, as

shown later, the noise spectrum is not completely flat. It
contains low-frequency colored �flicker� noise with white
thermal noise as the asymptotic high-frequency limit. The
existence of colored noise is explained by small deviations
from the linear regime and incorporates the presence of non-
linear propagation effects weakly coupled �i.e., a quasilinear
communication system�. From information theory, the en-
tropy H function of a Gaussian signal embedded in the pres-
ence of Gaussian noise as follows:

H =
1

2
ln�1 +

S

N
� �natural units� , �3�

where �S /N� is the signal-to-noise variance ratio �20�. To
evaluate this ratio, it is assumed that timing between spikes
encodes the sensory information. That is, neurons are sensi-
tive to the time of arrival between successive impulses and
will respond as spike timing units detecting in which time
interval one or the combined action of multiple spike trains
is received �33�. Changes in the firing rates are considered
noise and the reciprocal, the variability of the interspike time
interval, the received signal. To describe noise fluctuations,
each neuron in the sensory network is treated as a one-
dimensional oscillator under external noisy stimulation char-
acterized by its firing rate m�t� �spikes per second�. In a
simple view, the instantaneous change in m�t� can be de-
scribed by a Langevin-type equation as follows:

dm�t�
dt

= − am�t� + F�t� . �4�

The first term on the right-hand side in Eq. �4� indicates the
restoring process. The coefficient a has dimensions of fre-
quency �Hz� and governs the time scale of the firing rate. The
second term F�t� represents the stochastic perturbation due to
the spontaneous activity of other neurons in the network.
These noisy impulses have short memory. They are excita-
tory or inhibitory and are assumed zero-mean Gaussian delta
correlated: �F�t�F�t��	=G��t− t��, �F�t�	=0. �…	 represents
the average over the ensemble of impulses in the network
and G is the coupling coefficient that determines the intensity
of the impulses in F�t� �42�. The noise variance or fluctua-
tions in the average spike output 	2 depends on m�t� and
gives the basis to evaluate the entropy H function: 	2

= �m2	− �m	2. To solve for m�t�, it is proposed that a is a
slow, frequency-varying function. That is, the coefficient a
is, on average, approximately constant and equal to the mean
value for each neuron in the network during the time needed
to react �20,39�. Therefore, m�t� reduces to the following
equation:

m�t� = m�0�e−at + e−at

0

t

eatF�
�d
 . �5�

After a long period of time, the initial responses in sensory
receptors cells are progressively forgotten and the sensory
neural network is completely adapted to the steady state.
Hence, the first term on the right-hand side in Eq. �5� is
dropped and m�t� is mainly determined by postreceptoral
mechanisms and the correlation between their spikes in F�t�
�42�. The time course of fluctuations 	2 is determined by an
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ordinary Brownian process to the asymptotic value G /2a as
follows:

	2 =
G

2a
�1 − e−2at� . �6�

The dissipation-fluctuation theorem �42� establishes

G = 2ameq, �7�

where meq is a parameter to be evaluated at the steady state.
Therefore, the reciprocal of 	2 in Eq. �6� or fluctuations in
the interspike time rate are associated with the signal-to-
noise variance ratio in the H function

S

N
=

1

	2 . �8�

Although the power or energy spectrum of a classical
Brownian motion is usually calculated by its autocorrelation
function, here it is explicitly assumed that meq is not a con-
stant value and a form of noise-coded signal emerges. Figure
1�a� shows the evolution of 	2 in time for different values of
a �meq fixed to unity�.

Fluctuations in the firing rates accumulate over time de-
scribing an S-shaped curve �on a semilogarithmic scale�, and
eventually saturates at high processing times. Low a values
��0.5� move the S-shaped curve to higher processing times
and vice versa. Because t is always higher than the encoding
time t0, the accumulation of noise in time is equivalent to
increasing the frequency bandwidth of the process, defined
proportional to the difference between the maximum and
minimum frequencies available �fmin=1 / t�� �fmax=1 / t0�. As
a consequence, the variability of the interspike time interval
decreases exemplifying the usual trade-off between the sig-
nal and the bandwidth in analog communication systems
�43�. Figure 1�b� shows this relation plotting the signal-to-
noise ratio �Eq. �8�� against the frequency bandwidth for dif-
ferent values of a �t0=30 ms, meq=1�.

To overcome high noise fluctuations maintaining system
performance, neurons must cooperate regenerating and am-
plifying the signal. A common procedure in band-limited
communication systems consists of reducing the noise en-
ergy �43�. It is proposed that neurons promote synchroniza-
tion preserving their relative phases and reaching the steady
stage by phase locking �34,44�. This is a nonlinear process
and indicates the presence of power-law scaling �36,44�.
That is, meq impairs the growing of noise fluctuations in time
modulating the ratio of the noise energy spectrum E�f� to
thermal noise by a power-law distribution as follows:

meq � � E�f�
kBTb

�−p

� 1. �9�

p is a parameter greater than zero and sets the strength of the
coupling: p values equal or higher than unity imply small
coupling and vice versa �44�. kB,Tb are the Boltzmanns con-
stant and the body temperature, respectively. The introduc-
tion of the quantum of thermal energy in Eq. �9� is justified
by the fact that the stimulus intensity excites the local sen-
sory network out of thermodynamic equilibrium. However,
the network is still contained within a thermal bath generated

by the whole brain. The thermal criterion establishes the
baseline where nonlinear propagation starts and ensures sta-
bility. That is, fluctuations in the firing rate could easily dis-
sipate in time to almost zero if the energy generated in the
transduction process is far from kBTb, as in the absorption of

FIG. 1. �a� Semilogarithmic plot of the simulation of fluctua-
tions in firing rates 	2 �in normalized units� as a function of time for
different values of a �meq fixed to unity�. �b� Full logarithmic plot of
the trade-off between the signal-to-noise ratio and the bandwidth
�Hz� for different values of a �meq fixed to unity�. �c� Semilogarith-
mic plot of the simulation of fluctuations in firing rates 	2 �in nor-
malized units� as a function of stimulus intensity for different val-
ues of p �very low, p=2.7; low, p=1.2; and moderate, p=0.2 neural
synchronization, respectively�. The temporal dependence was fixed
to unity.
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a photon or an odorant molecule �45�. The next important
consideration is that the internal noise spectrum has a differ-
ent dependence on changes in the stimulus strength. It con-
tains multiplicative signal-dependent noise �31�. meq de-
creases as the stimulus intensity increases and noise remains
constrained in the sensory network meq� �E�f� /kBTb�−p

= �I /kBTb�−p.  is a constant. This form of power-law scal-
ing resembles the reciprocal of Stevens’ law in psychophys-
ics �8,17,20,35,36,46�. From Eq. �6�, the normalized 	2 de-
fines the functional steady state of the network as follows:

	2 = � kBTb

I
�p

�1 − e−2at� . �10�

Figure 1�c� shows the evolution of 	2 as a function of stimu-
lus intensity for different values of p �very low, low, and
moderate coupling at p=2.7, p=1.2, and p=0.2, respectively,
2at fixed�. For suprathreshold stimulus intensities and low
oscillatory synchronization �p�1�, the evolution of fluctua-
tions is bounded. Introducing the reciprocal of Eq. �10� into
Eq. �8� it is now possible to evaluate the entropic H function
�Eq. �3�� as follows:

H�I,t� =
1

2
ln�1 +

�Ip

1 − e−2at� , �11�

where �= � /kBTb�p. For all modalities of sensation, Eq. �11�
represents the Boltzmann-Shannon entropy function. The en-
tropy H function describes the average flow of information
transmitted by the sensory cells in the brain through a qua-
silinear channel with short-range perturbations �20,39�. Fig-
ures 2�a� and 2�b� show the evolution of H�I , t� in the time
and stimulus intensity for different values of a and p, respec-
tively.

From Fig. 2�a�, the entropy function decreases �a reduc-
tion of uncertainty� at higher processing times �20,39�. From
Fig. 2�b�, the entropy function increases �a gain of uncer-
tainty�, as a function of stimulus intensity �20,39�. The rise is
attenuated changing the coupling coefficient from low
�p=1.2� to moderate �p=0.2� neural synchronization. It is
assumed that the H function is null at t=0. After reaching its
maximum value at t0, it decreases as the stimulus duration t
increases �t� t0�, and therefore, there is a reduction of uncer-
tainty and the sensory system gains information in accor-
dance with Eq. �2�. In a human reaction-time procedure, it is
considered at intermediate times far from the saturation
value �short-term memory process, 2at�1�, 1−e−2at2at
and for the entropy H function obtaining �20�

H�I,t� =
1

2
ln�1 +

�Ip

t
� , �12�

where the parameter � includes �= �1 /2a�� /kBTb�p.

B. Modeling reaction times: Piéron’s law

There is a correspondence between the transfer of infor-
mation �H in Eq. �2� and the sensory or intensity threshold
I0 for which a response can start. Both are related in the limit
when tRT→�. The solution of Eq. �2� can also be rewritten
using the asymptotic value tRT0

, estimated in the limit when

I→�. From Eqs. �12� and �2�, tRT= tRT0
/ �1− �I0 / I�p� �20�. At

suprathreshold intensities �I0� I�, the denominator can be
expanded in a binomial series and Piéron’s law is derived if
the constant � in Eq. �1� is identified with �= tRT0

I0
p �20�.

tRT = tRT0
�1 + � I0

I
�p�, ∀ I0 � I . �13�

Equation �13� was originally derived by Norwich using dif-
ferent arguments �20�. Indirectly, it has been partially veri-
fied in some studies in visual psychophysics, where the re-
ciprocal of � in Eq. �1� has been related with the human
contrast sensitivity function and p fixed to unity �47–50�.
Figure 3�a� represents a simulation of Piéron’s law �Eq. �13��
for low and moderate neural synchronization �p=1.2 and
p=0.2, respectively, solid symbols�, over a range of intensi-
ties �e.g., in vision, luminance in cd /m2�, and their correction
at near threshold conditions �open symbols� with
tRT0

=314 ms and I0=15.
The present RT model also describes the structure or how

RT grows from Piéron’s law. Figure 3�b� indicates a sche-

FIG. 2. Full logarithmic plot of the simulation of the entropy H
function �in natural units� as a function of �a� time for different
values of a. Stimulus intensity was fixed to 10 000 �arbitrary units�
and �b� stimulus intensity for different values of p �very low,
p=2.7; low, p=1.2; and moderate, p=0.2 neural synchronization,
respectively�. Time was fixed equal to the reciprocal of 2a.
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matic representation. From a fixed intensity I, the mean RT is
represented as a segment in the time axis and it is divided
into smaller fragments. From Eq. �13�, the mean RT grows
from the asymptotic term tRT0

with a gain factor that depends
on the intensity ratio �I0 / I�. That is, Eq. �13� can be rescaled
to a proper power law as follows:

tRT − tRT0
= �tRT0

I0
p�I−p. �14�

Equation �14� establishes a scaling relationship in intensity.
In a logarithmic plot, the length of the time segment

tRT− tRT0
decreases as a straight line as the intensity of the

physical stimulus increases with slope −p. Shrinking itera-
tively in the time axis will move to shorter time segments but
the power-law dependency prevails �21�. The next segment,
the asymptotic term of Piéron’s law tRT0

is rescaled in rela-
tion to the encoding time t0, and the time segment tRT0

− t0

depends on the following power law:

tRT0
− t0 = �I0

p. �15�

For a given pedestal or intensity background Ibc, I0 is fixed
but rises as Ibc rises. Over the middle range, both factors are
related in accordance with Weber’s law �17,20�. In a loga-
rithmic plot, the term tRT0

− t0 decreases linearly as the recip-
rocal of I0 increases with slope −p. In the asymptotic limit, it
is possible to reach the response function of a single neuron.
The Naka-Rushton or Hill-like functions give a good ap-
proximation of the firing state R �in spikes per second�, and
represent a form of gain control below the saturation value
Rmax �45,51–53�: R=Rmax / �1+ �I0 / I�q�, where I0 and q are
the corresponding intensity threshold and the response expo-
nent, respectively. Gain control mechanisms adjust the cell’s
responses to different input signals: low intensities are en-
hanced in relation to high intensity variations and neurons
are sensitive to a wide range of intensity changes �52,53�.
Taking the reciprocal of the neural response R as the inter-
spike time interval in the nth iteration tn=R−1, an inverted
Naka-Rushton equation follows Piéron’s law if the minimum
time is equal to the reciprocal of Rmax, tn−min=Rmax

−1 , and q is
equal to p as follows:

tn − tn−min = �tn−minI0
p�I−p. �16�

The reduced time fragments are not exact copies and differ
from each other except for the form of the power functions
�Eqs. �14�–�16�� are identical with exponent p. There is no
single scale. Equations �14�–�16� are rescaled by different
amounts and shifted in accordance with affine time seg-
ments. Therefore, Piéron’s law involves self-affine scaling
behavior, and the fractional values of the exponent p define
the fractal dimension of the process.

C. Flicker noise at the threshold and suprathreshold levels

The intensity ratio in Eq. �13� defines a measure of the
power spectrum in the noisy state meq. That is, E�f�� I and

the normalized energy spectrum P̃��I / I0��1. As previ-
ously defined, the linear frequency is taken as the reciprocal
of the time and can be expressed in normalized units:

�fmin=1 / tRT�� �f =1 / tRT0
�, f̃ = �f / fmin���tRT / tRT0

��1. From
Eq. �13�, in a logarithmic frequency scale Piéron’s law ac-
quires the form

ln�P̃� = − �1/p�ln� f̃ − 1�, ∀ �I0 � I� . �17�

Equation �17� indicates a general form of flicker noise in
sensory systems with the reciprocal of the exponent p in
Piéron’s law as the corresponding slope. At high frequencies,
the power spectrum in Eq. �17� should be corrected. In ac-
cordance with the exact solution derived from Eq. �12�,

FIG. 3. �a� Reaction time as a function of the stimulus intensity
�arbitrary units�: simulation of Piéron’s law �solid symbols� for dif-
ferent values of the exponent p �low, p=1.2 and moderate, p=0.2
neural synchronization, respectively, tRT0

=314 ms, I0=15�. Open
symbols represent the correction near the reference value I0. �b�
Schematic representation of a reaction time process in accordance
with Piéron’s law. For a fixed intensity, the mean RT or tRT is
represented as a horizontal segment in the time axis. The vertical
axis indicates the cumulate number of different parts or segments
that composes the mean RT. From right to left, tRT is divided into
smaller segments. Each time segment has a different size and grows
from the previous one by a power function governed by the expo-
nent p of Piéron’s law �i.e., a gain factor�. This has been represented
by displacing each segment in the vertical axis as indicated by the
arrows. At short processing times, the number of segments counted
increases until the nth iteration but the power function remains.
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ln�P̃�=−�1 / p�ln�1-�1 / f̃��. Hence, E�f� deviates from linear-
ity and drops to the reference value defined by the threshold
I0. Figure 4�a� represents in a double logarithmic plot, a
simulation of the normalized power spectrum at suprathresh-
old conditions �Eq. �17�� based on Piéron’s law �solid sym-
bols� and its correction at high frequencies �open symbols�,
with tRT0

=314 ms and for low and moderate neural synchro-
nization �p=1.2 and p=0.2, respectively�.

The functional dependence of the power spectrum at the
threshold is derived from the asymptotic term in Eq. �15�:
tRT0

= t0+�I0
p. The normalized power is defined as the recip-

rocal of the ratio between I0 to the intensity background Ibc,

P̃���Ibc / I0��1. The linear frequency is now normalized by
the minimum frequency: �fmin� =1 / tRT0

�� �f�=1 / t0�,
f̃�= �f� / fmin� ���tRT0

/ t0��1. There is a maximum value de-

fined by f̃max� =2at0 and the energy spectrum at the threshold
results as follows:

ln�P̃�� = −
1

p
ln� f̃max� � f̃� − 1�� + ln� Ibc

kBTb
� . �18�

Equation �18� represents again a form of flicker noise. As the
normalized frequency moves to the maximum value �2at0�,
the power spectrum flattens. Under the latter condition, the
intensity background converges to I0; i.e., the absolute sen-
sory threshold. The power spectrum is modulated by the
rightmost term in Eq. �18�. The criterion of stability �Eq. �9��
prevents a power spectrum less than unity. Hence, fluctua-
tions are made against the quantum level kBTb and merge
into thermal noise. Figure 4�b� indicates in a double logarith-
mic plot, a simulation of the normalized power spectrum at
the threshold �Eq. �18�� for different exponent p values
�p=1.2 and p=0.2 or low and moderate oscillatory coupling,
respectively�, with t0=30 ms and a=0.5.

III. DISCUSSION

A. Fractal time processes in Piéron’s driven neural networks

In the present study, Piéron’s law has been reformulated
using methods from statistical physics and information
theory. The RT model uses the Langevin theory of Brownian
motion to show that variability in the firing rate has a func-
tional significance in sensory coding as noise. Noise fluctua-
tions accumulate in time and approach a steady state in
short-range interaction processes �Eqs. �4�–�10��. It is pro-
posed that spontaneous oscillatory synchronization reduces
multiplicative noise. Hence, the steady state constrains the
internal noise energy as a function of stimulus intensity �Eqs.
�7� and �9��. A plausible mechanism of response variability
with stimulus intensity may be the membrane potential noise
of neurons in the cortex �54–56�. The RT model defines
Piéron’s law as a transformation function in the time axis
from the inverted intensity-response function of single neu-
rons. Each time segment in Piéron’s law represents a differ-
ent stage and is normalized by different factors to look simi-
lar to the whole �Eqs. �14�–�16��. There is no single scale and
fractional values of the exponent p are often reported
�1,13,16,18–20�. The present study shows that Piéron’s law
can be rewritten in the frequency domain �Eqs. �17� and
�18��, and connects the gain of information �Eq. �2�� with
low-frequency flicker noise, with the reciprocal of the expo-
nent p as the slope of the power spectra �Fig. 4�. Therefore,
the RT model suggests the existence of a fractal �self-affine�
process in time �26�, a signature of complexity also reflected
in heartbeat dynamics �57�.

The presence of small values of multiplicative flicker
noise �Eq. �9�� validates the use of the underlying quasilinear
communication system, with Piéron’s law supporting moder-
ate levels of neural synchronization �p�0.1�
�1,16–18,20,48–50,52�. Multiplicative noise may induce
phase transitions �31� and neural activity by power laws
might be related with the presence of self-organized critical
states �7,58�, with the reciprocal of the exponent of Stevens’s
law as the critical exponent �36�. These self-organized states
may also improve the internal coherence of spikes, where the
variability of the interspike time rate will grow with stimulus
intensity �equivalently, internal noise energy�, at medium-

FIG. 4. Double logarithmic plot of the simulation of the normal-
ized power spectra �in threshold units� derived from Piéron’s law
�solid symbols� for different values of the exponent p �low p=1.2
and moderate p=0.2 neural synchronization, respectively� at �a�
suprathreshold conditions with tRT0

=314 ms �open symbols repre-
sent the correction at high frequencies� and �b� threshold conditions
with t0=30 ms and a=0.5.
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high levels �Eqs. �8� and �10�� �31�. These issues merit fur-
ther investigation.

B. Implications for visual-motor transduction

Unlike previous RT models �1,17,22–25,41�, the present
approach based on Piéron’s law is a three-serial-stage
sensory-motor model and resolves the separation of RT into
the sensory latency and the motor component �1�. The en-
tropy model guarantees that the time hierarchy in Piéron’s
law corresponds to a generic communication system �a
source generator or encoder comprising a transmitter, a noisy
transmission channel, and finally, a receiver�. That is, the
asymptotic limit tRT0

does not contain the motor component
but those latencies associated with the two earliest visual
stages: the encoding time t0 and the time associated with the
formation of the threshold condition, tRT0

= t0+�I0
p. In chro-

nological order, it is suggested that the asymptotic term
�tRT0

� t0� can be identified as the visual latency and the mo-
tor processing time may be associated within the factor,
tRT0

�I0 / I�p �Eq. �13��. The analysis of flicker noise at the
threshold �Eq. �18�� asserts that RT is not a scale-free pro-
cess, and the existence of white noise at high frequencies
could not be ascribed to the motor component �4,6–8,10� but
to thermal fluctuations �Fig. 4�b��. The thermal noise limit
defined by the body temperature indicates the characteristic
scale from nonlinear propagation starts �Eq. �9��. It is inter-
esting to note that for a fixed stimulus intensity I, the
asymptotic term tRT0

indicates that RT decreases as the body
temperature increases as confirmed previously �59�. There-
fore, the present RT model indicates that the motor compo-
nent also follows 1 / f�-type noise �Eq. �17��. This is in agree-
ment with the existence of blood oxygenation level
dependent �BOLD� fluctuations in the motor cortex that fol-
lows 1 / f power spectrum �60�.

In vision research, the experimental magnitude of tRT0
�usually higher than 200 ms� �48–50�, contrasts with the mo-
tor conduction time �less than 50 ms� �61�. The present RT-
motor model �Eq. �13�� is also in agreement with an extreme
but important condition: if a very intense signal is evoked
without previous adaptation such as in night driving, glare

effects become important. In this situation, the threshold to
extract any relevant information from the environment �e.g.,
target identification, an intersection in a road, etc.� rises
�50,62� and delays any voluntary motor movement �50�.

It is interesting to note that an exponent p equal to unity
involves 1 / f noise �Eqs. �17� and �18��. Light adapted con-
ditions improve transient behavior and provide shorter and
less variable latencies �15�. From psychophysics, p values
close to unity have been reported �low synchronization�
�48–50�. On the contrary, dark-adapted eyes involve longer
and more variable latencies and p values lower than unity
�moderate synchronization� �1,20�. Light adaptation may
help optimal transfer of information in the visual cortex
through 1 / f noise �63�, and may enhance the processing of
natural scenes in relation to dark adaptation. This has an
advantage in the coherence transport of spikes, reducing
noise fluctuations to a low level while uncertainty does not
rise too much �Figs. 1�c� and 2�b��.

IV. CONCLUDING REMARKS

Piéron’s law defines a sensory-motor model based on
flicker noise not restricted to the analysis of error sequences
�4,6–10�. The RT model developed in this study presents,
possibly for the first time, a plausible mechanism between
flicker noise and the gain of information in human perception
though oscillatory neural synchronization. The fact that the
Naka-Rushton-type equation can be modeled as a form of
low-frequency flicker noise should be incorporated into net-
work models that analyze neural dynamics of the cortex
�36,52,53,55�. Finally, it is possible to apply the RT model
not only to vision but to other sensory modalities
�13,14,16,18,20�. This suggests that Piéron’s law represents a
general form of flicker noise in sensory systems.
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