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Abstract

Objective: To review the stochastic resonance phenomena observed in sensory systems and to describe how a random process (‘noise’)

added to a subthreshold stimulus can enhance sensory information processing and perception.

Results: Nonlinear systems need a threshold, subthreshold information bearing stimulus and ‘noise’ for stochastic resonance phenomena

to occur. These three ingredients are ubiquitous in nature and man-made systems, which accounts for the observation of stochastic resonance

in fields and conditions ranging from physics and engineering to biology and medicine. The stochastic resonance paradigm is compatible

with single-neuron models or synaptic and channels properties and applies to neuronal assemblies activated by sensory inputs and perceptual

processes as well. Here we review a few of the landmark experiments (including psychophysics, electrophysiology, fMRI, human vision,

hearing and tactile functions, animal behavior, single/multiunit activity recordings). Models and experiments show a peculiar consistency

with known neuronal and brain physiology. A number of naturally occurring ‘noise’ sources in the brain (e.g. synaptic transmission, channel

gating, ion concentrations, membrane conductance) possibly accounting for stochastic resonance phenomena are also reviewed. Evidence is

given suggesting a possible role of stochastic resonance in brain function, including detection of weak signals, synchronization and

coherence among neuronal assemblies, phase resetting, ‘carrier’ signals, animal avoidance and feeding behaviors.

Conclusions: Stochastic resonance is a ubiquitous and conspicuous phenomenon compatible with neural models and theories of brain

function. The available evidence suggests cautious interpretation, but justifies research and should encourage neuroscientists and clinical

neurophysiologists to explore stochastic resonance in biology and medical science.

q 2003 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Stochastic resonance (SR) is essentially a statistical

phenomenon resulting from an effect of noise on information

transfer and processing that is observed in both man-made

and naturally occurring nonlinear systems (Moss, 1994,

2000; Moss et al., 1994; Wiesenfeld and Moss, 1995, for

reference). Since the early 1980s, it has provided theoretical

and experimental researchers with a rich source of research

topics (mostly in the physical sciences), with frequent reports

published in both physics and interdisciplinary journals. In

the early 1990s, a crucial paper delineated the role of noise in

neural encoding and phase-locked responses of sensory

neurons to weak periodic stimuli (Longtin et al., 1991). SR

was then documented in experiments on neural encoding in

invertebrates (see Appendix A), with interest and application

in sensory biology, neuroscience and medical science soon

appearing and growing (Chiou-Tan et al., 1996, 1997). A

recent review focuses on biological applications and the

noise-dependent synchronization of oscillators – a process

of potential importance in neuroscience and medicine

(Anishchenko et al., 1999).

The purpose of this review is to draw attention to this

extremely simple phenomenon, its possible functional role in
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brain processes and the potential application in neuroscience

and clinical neurophysiology. Although still a subject of

research, SR has already found a direct application for

efficient encoding of auditory information used in cochlear

implants (Morse and Evans, 1996). Recent research points

toward clinical applications involving electromyography of

the human median nerve (Chiou-Tan et al., 1996),

augmentation of muscle function (Chiou-Tan et al., 1997)

and the human tactile sense (Collins et al., 1997; Priplata

et al., 2003).

The nonlinearities peculiar to cortical dynamics, sensory

information processing and neuronal function motivate

research on SR. In this respect, the study of electrophysio-

logical signals appears a privileged approach, and SR may

help understand the neuronal mechanisms underlying the

responses to sensory inputs. Under the assumption of

substantial correlation between neuronal function and

recorded signals, in fact, the stimulus-dependent transient

recruiting of neurons from discrete brain locations that

results in the episodic coherence and synchrony of signals at

some given frequency and is modulated both globally and

regionally can be approximated to resonance (Basar, 1992;

Basar and Bullock, 1992; Varela, 1995; Nuñez, 1995;

Varela et al., 2001).1 Noise is ubiquitous in the CNS,

although somehow difficult to characterize (see Section 9).

2. What is SR?

SR is a nonlinear phenomenon whereby the addition of a

random interference (‘noise’, as it is almost universally

called) can enhance the detection of weak stimuli or

enhance the information content of a signal (e.g. trains of

action potentials or signals generated by a neuronal

assembly). An optimal amount of added noise results in

the maximum enhancement, whereas further increases in the

noise intensity only degrade detectability or information

content. The phenomenon does not occur in strictly linear

systems, where the addition of noise to either the system or

the stimulus only degrades the measures of signal quality

(see for reference: Benzi et al., 1981; Moss, 1994, 2000;

Moss et al., 1994; Wiesenfeld and Moss, 1995; Ward et al.,

2002). Additional information is given in Fig. 1.

In its simplest manifestation, referred to as ‘threshold

SR’ or ‘non-dynamical SR’, stochastic resonance results

from the concurrence of a threshold, a subthreshold

stimulus, and noise (Gingl et al., 1995). These ingredients

are ubiquitous in nature as well as in a variety of man-made

systems – which accounts for the observation of SR in

many fields and conditions. The phenomenon also exists

in another form (‘dynamical SR’) which appears only in

stochastic, nonlinear, dynamical systems. Indeed, SR was

thought to exist only in its dynamical form throughout most

of its history, commencing with its discovery as a possible

approach to explain periodic recurrences in the Earth’s Ice

Ages (Benzi et al., 1981, 1982; Nicolis, 1982, 1993). An

adequate description of this form of SR requires the theory

and mathematics of dynamical systems, a treatment that can

be found in Gammaitoni et al. (1998). This review will focus

Fig. 1. Noise-enhanced information in a threshold system. The threshold,

D0, is the distance between the mean of the subthreshold stimulus (thick

solid line) and the threshold (dashed line). The stimulus, x(t) was generated

from the Rössler system: _x ¼ 2ðy þ zÞ; _y ¼ x þ 0:15y;

_z ¼ 0:2 þ zðx 2 7:1Þ. The attractor x(t) versus y(t) is shown on the right.

The band limited, Gaussian noise j(t) (irregular light line) was generated

from: €jþ ð2=tÞ _jþ ð1=tÞj ¼ ð1=t2Þ
ffiffiffiffi
2D

p
wðtÞ, where D is the noise intensity,

w(t) is Gaussian noise with zero correlation time and the correlation time,

t ¼ 0:05. The lower panel is the mutual information between spike trains

generated by noise alone and noise plus stimulus. The optimal noise

intensity is Dopt ø 0:022 for which the information is a maximum. The

information in the spike train can be quantified by computing the mutual

information (I) between a spike train (top panel) occurring in the absence of

a stimulus (i.e. with noise alone) and the spike train resulting from the

stimulus plus the noise, I ¼ H0 2 HS, where the latter two quantities are the

Shannon entropies without, H0, and with, HS, the stimulus present. They are

each defined by H ¼ 2
Pn

i¼1 PilogPi, where Pi is the probability of finding

a spike in a certain time interval of the spike train, and n is the total number

of intervals the time axis is divided into (Shannon, 1948). How to calculate

the entropies specifically for spike trains can be found in Strong et al.

(1998).

1 Resonance defines in physics the enhanced response of a system for

some values of the input parameters. The core feature of this enhancement

is its occurrence when the driving frequency of the input matches the

system natural or inherent frequency (i.e. the intrinsic characteristics of the

circuit). If applied – with due approximation – to stimulus-related neuronal

activation and signals, this concept would indicate frequency-dependent

neural assemblies or circuitry properties and suggest some functional

specificity with respect to frequency of brain signals. Experimental

evidence indicates that cell and circuit properties determine to some

extent the frequency of neuronal membrane oscillations (König et al., 1992;

Jefferys et al., 1996; Herculano-Houzel et al., 1999; Sannita, 2000, 2003;

Solessio et al., 2002).
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on the threshold version of SR. The restriction is appro-

priate, as natural systems such as the animal and human

brain, visual and auditory systems, and behavior lack the

rigorous and quantitative theories needed to apply dynami-

cal SR.

2.1. How threshold crossings enhance detectability and

information content of sensory neural discharges

Fig. 1 outlines the 3 ingredients contributing to threshold

SR mechanisms in an example where the subthreshold

stimulus was generated by a chaotic system (a Rössler

attractor) that conveniently mimics the oscillatory processes

occurring in the brain and shares the physiological relevance

of chaotic systems (Strogatz, 1994). The Rössler system is

not strictly periodic. Instead, its ‘frequency’ varies in time

around some preferred value; in this respect, it approximates

the variability of the signals related to brain function most

often encountered in neuroscience and medicine, such as the

EEG or MEG signals (e.g. Srebo and Malladi, 1999; Tass

et al., 2003). Alternatively, the dynamics of the attractor can

be shown by means of its so-called ‘phase portrait’, i.e. by

plotting the instantaneous amplitude of one variable versus

another. The phase portrait of the Rössler attractor, x(t)

versus y(t) (as defined by the equations in the caption), is

shown in the inset of Fig. 1 (right).

The paradigm is that information about the subthreshold

stimulus is encoded by the sequence of threshold crossings.

The stimulus is by itself below threshold, never crosses it,

and is therefore undetectable. When noise is added to the

stimulus, threshold crossings occur with greater probability

near the peaks of the stimulus where it comes closest to the

threshold. The noise (with Gaussian distribution and band

limited to an upper cut-off frequency significantly larger

than the characteristic frequencies contained in the stimu-

lus) is shown in Fig. 1 by the thin irregular line. Positive-

going threshold crossings of the stimulus plus the noise are

indicated by the sequence of identical marker pulses, here

called the ‘spike train’, shown in the topmost tracing.

Though noisy (i.e. with spikes occurring irregularly in

time), such sequences contain a large amount of information

about the subthreshold signal. When compared with a

situation in which the noise alone is present, in which

threshold crossings occur completely at random, this

additional information allows the stimulus to be detected

and characterized.

This paradigm actually represents an early, simple,

stochastic neuron model (McCullough and Pitts, 1943)

also applicable to ion channels. Additional features can be

added to the neuron model, for example to provide for a

refractory time or a dynamic threshold with a post-firing

relative recovery time. A FitzHugh–Nagumo model (Moss

et al., 1993) or a full Hodgkin–Huxley model (Braun et al.,

1998) can also be employed. Though the quantitative results

across these different models vary, the qualitative or

overall features of the processes described here are

preserved. A comprehensive discussion of modern infor-

mation theory applied to neural discharges is given by Rieke

et al. (1997). The mutual information for various noise

intensities results in the graph shown in the lower panel of

Fig. 1. We note that the optimal noise intensity for this

example is approximately 0.022 for which value I is a

maximum. This occurrence of the maximum mutual

information at a non-zero noise level is the signature of SR.

2.2. The signal-to-noise ratio

A convenient measure of the quality of the signal

output by the threshold system and representing the

subthreshold stimulus (e.g. a spike train representing the

times when stimulus þ noise exceeded the threshold) is

the signal-to-noise ratio (SNR) computed from a time

average of the power spectrum of the signal.

The role of noise is to sample the stimulus. This means

that the larger amplitude excursions of the noise cross the

threshold and provide a ‘sample’ of the subthreshold

signal’s amplitude at a given instant in time. For good

information transmission, the sampling rate should be

greater than the stimulus frequency (see also Section 8).2

3. SR in sensory biology and animal behavior

The original experiment that demonstrated SR in sensory

biology made use of the predator avoidance system of the

crayfish (Douglass et al., 1993; Pei et al., 1996; Wilkens and

Douglass, 1994; for a review on nonlinear processes in the

crayfish mechanoreceptor system see Bahar and Moss,

2003a,b). A paradigmatic demonstration of SR enhancing

the perception of sensory information and also affecting

animal behavior comes from experiments on the feeding

behavior of the juvenile paddlefish (Russell et al., 1999).

Evidence from animal studies indicates that they can

perceive the enhancement of information available in the

peripheral sensory system with the addition of external

noise, and that they can make use of this noise-enhanced

information, for example for feeding or predator avoidance.

These experiments (see Appendix A for detailed infor-

mation) nevertheless raised questions about the SR

2 This measure is more suitable when the stimulus is a purely periodic

function, Asin(v0t), of amplitude A and frequency v0. For threshold SR

the SNR (in units of decibels) has been calculated as follows (Moss et al.,

1994): SNR ¼ 10log10

� 2vnD
2
0A2

ffiffi
3

p
s4

�
exp

�
2

D2
0

2s2

�
where vn is the upper cut-

off frequency of the noise, D0 is the distance between the mean of the

stimulus and the threshold, and s is the standard deviation of the

(Gaussian) noise. This formula is subject to only two approximations that

seem to be well justified in most applications: vn q v0, and D0 q A. The

combination of the inverse noise intensity (s 4) in the prefactor and

inverse s 2 in the exponent of the formula results in a graph with a

maximum of the SNR located at an optimal (non-zero) value of the noise

intensity, similar to the graph of mutual information versus noise intensity

in the lower panel of Fig. 1.
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phenomena and sensory perception that could be addressed

only through experiments with humans, e.g., by psycho-

physical approaches.

4. SR in human psychophysics experiments

In order to demonstrate SR in human perception it is

necessary to use psychophysical techniques that precisely

characterize the responses of the sensory systems to

physical signals (e.g. Fechner, 1966; Norwich, 1993), and

this has been done (e.g. Ward, 2002; Ward et al., 2002;

Sections 4–6 of this paper). Classical psychophysical theory

postulated a fixed absolute threshold for perception, but

typical experimental results rarely support this assumption

(Fig. 2A). Either the absolute threshold varies randomly

according to a roughly Gaussian distribution, or the

threshold is ‘soft’ (i.e. the logistic or a similar function

describes the transfer function of the human sensory

system). Opinion is divided as to which is the case, although

under extremely low-noise conditions a fixed threshold can

be discerned. For example, Hecht et al. (1942) found an

absolute threshold of 6 photons for light detection, therefore

suggesting that environmental noise may be responsible for

the lack of a fixed threshold under more usual experimental

conditions.

Extremely low-noise experimental conditions are rare.

Green and Swets (1966), among others, argued that stimulus

detection typically was a signal-to-noise problem and

suggested a variant of statistical decision theory (called

signal detection theory; SDT) to replace the classical theory

(Fig. 2B). The index of sensitivity in SDT experiments, d0, is

independent of the position of the criterion relative to the

two distributions, and thus avoids problems caused by

varying motivation of observers. It is the preferred measure

of performance in modern psychophysics. The d0 measure

should be maximal at some non-zero level of added noise if

SR is operating in a signal detection experiment. Notice that

in this theory, there is no threshold as such, only a decision-

related nonlinearity whose position is not fixed. This raises

some problems for the interpretation of SR experiments

(e.g. Tougaard, 2000; Ward et al., 2002).

An early result of psychophysics (the ‘negative mask-

ing’) deserves mention here. In psychophysics, as in

physics, noise usually interferes with detection and

identification of a signal – a process called masking.

Some studies on masking in audition, vision and touch have

reported that at very low levels of signal and mask intensity,

it is easier to detect the signal in the presence of the mask

than alone when the two are added in phase with each other

(see Laming, 1986, for a review). Higher intensities of the

mask have the usual interfering effect, making detection of

the weak signal more difficult. This phenomenon is

explained by the energy addition of the signal and the

mask, making signal þ mask discriminable from the mask

alone when signal þ mask is near threshold, but not when

the mask is very intense or very weak. Although these

studies never found out-of-phase or incoherent noise

maskers to have this effect (which would have been early

evidence of SR), some more recent studies to be described

shortly do find this effect with incoherent noise ‘maskers’.

This type of SR, which could be called Type E (for energy),

can be contrasted with SR in which energy addition of signal

and noise is not sufficient to explain the SR. In this situation,

which can be called Type I (for information), stimuli are

equated for energy and the critical feature is the trans-

mission of a signal modulation across the nonlinearity,

usually a threshold.

Many psychophysics experiments have demonstrated in

humans a threshold for visual perception (Norwich, 1993)

Fig. 2. Theories of psychophysics. (A) Classical threshold theory fixed absolute threshold assumption (solid line) for the experiment in which near-threshold

stimulus intensities are presented many times each for a detection response (‘yes’), with curve typically fitted to actual data (curved dashed line) and statistical

threshold determination at 0.5 proportion ‘yes’ responses (dotted line). (B) Signal detection theory. A particular, not-always-detected, stimulus intensity is

presented on signal present trials and no stimulus at all on signal absent trials. Over many trials the noisy sensory responses are Gaussian distributed as

indicated. On each trial, the observer responds ‘yes’ if the sensation magnitude (decision variable, I) is above a criterion, ic, and ‘no’ otherwise. Proportions of

‘hits’ (‘yes’ when stimulus present) and ‘false alarms’ (‘yes’ when stimulus absent) corresponding to areas under signal present and signal absent curves to the

right of ic are used to calculate d0, the standardized distance between the means of the distributions.
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as well as effects of noise and SR phenomena in the

perception of gratings, ambiguous figures, letters, and in the

3-dimensional perception of autostereograms (Riani and

Simonotto, 1994; Speranza et al., 1997; Simonotto et al.,

1997, 1999; Piana et al., 2000; Ditzinger et al., 2000; Ward,

2002; Ward et al., 2002). SDT experiments have demon-

strated that SR can improve the observers’ sensitivity to

weak visual signals (Section 4.1). Other studies have

investigated the effects on human perception of SR relative

to an artificial physical threshold (Section 4.2).

4.1. SR and the detection of weak visual signals

Several studies focused on the human threshold for

detection of luminance changes across space (Ward et al.,

2001). In an experiment, observers were requested to

recognize striped and non-striped visual stimuli (Fig. 3A).

Contrast was increased/decreased in small steps according

to an SDT-based adaptive technique and depending on the

observer’s correct/incorrect answer. To add noise, the gray

level of each pixel in the stimulus was increased/decreased

by different random amounts from a Gaussian distribution

with a particular standard deviation. The average luminance

of striped and non-striped stimuli was equated at all noise

levels. The added noise apparently renders weak spatial

modulations in luminance more detectable, by lowering the

contrast threshold at which they can be detected in

agreement with the Type I SR paradigm.

Following a different approach, Kitajo et al. (2003) had

observers adjust the strength of handgrip to the brightness of

a slowly varying visual signal presented to one eye (in this

case, the visual stimulus was above threshold, but its

variations were subthreshold). Noise was presented to

the same eye, or to the other eye, by adding random

luminance steps (successive samples from a Gaussian

distribution) at a rapid rate compared to the slow variation

of the stimulus. The coherence of variation between

handgrip strength and visual signal was greater for

intermediate levels of noise in both conditions, indicating

that the slow subthreshold variations were amplified by

intermediate levels of noise to the point where they helped

drive fluctuations in observers’ handgrip force. Conceiva-

bly, when signal and noise were added to separate eyes their

combination occurred somewhere in the visual system after

inputs from the two eyes combined in visual cortex.

4.2. Visual perception of SR: psychophysical and fMRI

studies with an artificial threshold

Perceptual response to SR has been studied in

several experiments in which the threshold was neither

Fig. 3. Results of psychophysical SR experiments in (A) vision (Ward et al., 2001), (B) audition (Ward et al., 2001), and (C) touch (Wells et al., 2001). Top

panels represent the stimulus situation, and bottom panels represent the data. For vision, the discrimination was between a grating and a uniform stimulus, for

audition between a 3 Hz beat and a non-beating stimulus, and for touch, the photograph shows the experimental setup with a tactile stimulator vibrating at 25

Hz just touching the foot sole. The y-axes in (A) and (B) (average thresholds over all observers) are reversed, so that the minimum thresholds appear in the

figures as maximum sensitivities at small, but non-zero, levels of added noise.

Fig. 4. Visual images of Big Ben on a 256 gray scale with spatial resolution

of 256 by 256 pixels. The original photograph is suppressed beneath a

threshold of D0 ¼ 30. Noise from Gaussian distributions is added to the

gray scale values in each pixel. Left-to-right the standard deviations of the

noise are s ¼ 10, 90 and 300, respectively. The information content in each

pixel is 1 bit: if the gray scale value in that pixel is greater than threshold

(30) the pixel is painted black. Otherwise it remains white. Reproduced

from Simonotto et al. (1997), with permission.
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physiological nor perceptive, but rather built into the visual

scenes displayed to the subjects. The purpose of the artificial

threshold was to suppress images below threshold and to

allow subthreshold visual stimulation of a sensory system

that operates across wide ranges of luminance and contrast.

In one study (Simonotto et al., 1997), the scene was black

and white on a 256 gray scale. The paradigm applied to the

gray scale value in each pixel was identical with the SR

paradigm put forth above. Each pixel was black whenever

the gray scale value of the image plus noise (a random

selection from a Gaussian distribution on 1–256) exceeded

the artificial threshold, or remained otherwise white. The

noise intensity was determined by the standard deviation of

the Gaussian distribution. An example is provided in Fig. 4,

where the picture was suppressed beneath a threshold and

the aforementioned paradigm applied. In the actual

experiment the noise was dynamical, i.e. in each pixel the

noise added to the suppressed image was a function of time

(the process is included in an interactive video made

available at http://neurodyn.umsl.edu/~simon/sr.html). As

shown in the figure and the video, there is an optimal noise

level enhancing the observer’s perception of the image. In

the actual experiment a visual stimulus consisting of stripes

of various widths was used and subjects were requested to

determine the best contrast level at which they could

distinguish between two fine stripes. A minimum in this

contrast level signaled the optimal noise (Simonotto et al.,

1997). A follow-on experiment focusing on letter recog-

nition has recently been reported (Piana et al., 2000).

Documenting that dynamical noise in a threshold system

can enhance the accuracy of perception of the scene,

however, provides no indication of whether the enhance-

ment is due to temporal averaging of the noise by the retinal

cells or reflects instead visual processing in the visual

cortex. An fMRI study applying a similar visual protocol

indicates that neural activation in visual cortex appears

improved by optimal noise (Fig. 5). The results do not allow

a comprehensive understanding of the neural mechanisms

involved, yet a conspicuous observation was that the

optimal noise was the same for all subjects at a fixed

threshold and within the experimental statistical precision

(Simonotto et al., 1999).

4.3. SR, brain multistability and the perception

of ambiguous figures

Looking at ambiguous figures results in spontaneous

alternation between different stable percepts or

interpretations in the absence of a physical change of

stimulus (Attneave, 1971) (Necker’s cube, where randomly

Fig. 5. fMRI statistical maps (color) for 4 stimulations representing a range of noise intensities. The volume of activated regions can be determined from sets of

cross-sections at differing vertical heights. Active volumes, represented by colored areas, are clearly largest for an intermediate level of noise (third column).

Reproduced from Simonotto et al. (1999), with permission.
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switching attention from one corner to another causes

alternation between foreground and background percepts, is

a classic example; Necker, 1832). This stochastic pheno-

menon, referred to as visual bistability or multistability,

engages separated specialized cortical areas, but is also

associated with intermittent inhibition of structures puta-

tively maintaining perceptual stability. Both antagonistic

connectivity within the visual system and events initiated by

brain areas that integrate sensory and non-sensory

information seem to be involved (Kleinschmidt et al.,

1998; Long and Olszweski, 1999; Leopold and Logothetis,

1999; Vetter et al., 2000). The dual perception of

perspective of Necker’s cube has been modeled based on

bistable energy potential with additional noise and appears

consistent with SR theory (Riani and Simonotto, 1994).

5. SR in human hearing

The auditory system is fundamentally nonlinear (Eguiluz

et al., 2000) and there is physiological evidence for SR to

occur in human hearing. For instance: (1) the hair bundles of

the inner hair cells exhibit SR with respect to mechanical

stimulation, with the critical amplitude of noise to give

maximum sensitivity of the hair cells being just about that

provided by Brownian motion of the surrounding fluid

(Jaramillo and Wiesenfeld, 1998); (2) noise added to the

auditory stimulus enhances vowel coding in experimental

animal models predicting the response of the human

auditory nerve to vowels coded by a cochlear implant

(Morse and Evans, 1996); (3) thresholds for detection and

discrimination of pure tones by people with cochlear or

brain-stem implants are decreased by the addition of an

optimum amount of broad band noise (Zeng et al., 2000);

and (4) the absolute threshold for pure tone detection by

normal hearing individuals is decreased in the presence of

non-zero levels of added noise (Zeng et al., 2000).

In these studies, SR is characterized by mechanisms of

Type E, in which subthreshold noise and stimulus combine

in energy to exceed the threshold and become detectable.

However, SR of Type I is also involved in human audition.

An experiment in which normal hearing listeners were

requested to recognize which of two ,70 Hz sounds was

beating at 3 Hz is summarized in Fig. 3B (Ward et al.,

2001). The two sounds were equated for carrier frequency

and total energy and differed only in the envelope

modulations of the 3 Hz beats. Gaussian noise was added

digitally to the two sounds before presentation through a

D-to-A converter and special sound-attenuating head-

phones. An adaptive technique based on SDT was used, in

which beat amplitude was increased/decreased in small

steps depending on whether the previous response was

correct or in error. The curve of the average beat thresholds

against the amount of added noise was congruent with

Type I SR, in that the sensitivity to the beats was highest for

a non-zero level of added noise (Fig. 3B). It should be noted

that the optimal amount of noise is near the absolute

threshold for the noise alone under these conditions. The

identification of Type I and Type E SR phenomena suggests

that audition can be improved in case of hearing loss by

adding noise to hearing aids or cochlear implant outputs

(e.g. Moss et al., 1996).

6. SR in human tactile experiments

Probably the first observation of Type E SR for tactile

sensation was by Collins et al., who found that a non-zero

level of random vibration added to the stimulator enhances

the detection of weak touches (indentations by a mechanical

stimulator) on the observers’ fingers (Collins et al., 1995,

1996a). In a later report, such enhancement was found to

occur only for near-threshold stimuli, with masking by noise

being observed for stimuli above threshold (Collins et al.,

1997). Ivey et al. (1998) reported similar psychophysical

results and showed how the tuning curves of the relevant

mechanoreceptors were affected by the addition of noise,

with most information being transmitted at intermediate

levels of noise. Richardson et al. (1998) documented that

direct electrical stimulation of the touch receptors with a

randomly varying electrical current added to a touch

stimulus resulted in SR for tactile sensation.

More recently, Type I SR has been demonstrated for

touch in experiments in which stimuli vibrating at various

frequencies were applied to the foot soles of young and

elderly adults (Wells, 2002; Wells et al., 2001) (Fig. 3C).

Noise was added digitally to the sinusoidal signal sent to the

stimulator through a D-to-A converter. The touch stimuli

were equated for total energy by setting the power of the

noise stimulus to equal that in the signal þ noise stimulus.

The only difference therefore was a weak sinusoidal

modulation (80% or 90% of threshold) in the stimulus that

subjects were requested to identify. For both younger and

elderly observers, the proportion of correct responses

(proportional to d 0 in this paradigm) was maximal at a

non-zero level of added noise (scaled as percentage of noise

threshold) (Fig. 3C). Moreover, SR occurred at all 4

vibration frequencies studied (25, 50, 250, and 400 Hz),

therefore implicating all 4 cutaneous receptor systems for

touch. The optimum noise level was below noise threshold;

it varied over frequencies and groups, but was never higher

than 66% of threshold and was detectable by itself only

exceptionally. In another experiment, observers’ ability to

discriminate small differences in the frequency of vibration

around 25 and 250 Hz was also improved by the addition of

small amounts of touch noise, but only when the vibrations

themselves were very weak (110% of non-noise threshold or

less). However, only one level of noise was used in this

experiment (the optimum noise level for the 90%-of-

threshold signal in the previous experiment) and enhanced
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discrimination at higher signal levels might be observed if

more noise were added.

Application of these findings seems possible. Thresholds

for vibration are significantly elevated in the elderly for

frequencies above ,40 Hz (Wells et al., 2003), but were

significantly reduced by SR phenomena in these experi-

ments (nearer to the young subjects’ thresholds). There is

promise that SR paradigms (induced for example by

randomly vibrating shoe inserts) may improve posture and

balance in debilitated patients or in the elderly. Indication in

this regard comes from the observation that noise reduces

postural swaying in the elderly to levels near those of

younger subjects without added noise and improves balance

(Priplata et al., 2002, 2003).

7. SR, nonlinear visual phenomena and visual

mechanisms

Visual information is processed in parallel, with

retinotopic projection to cortex through several major

pathways from any given retinal location and parallel

analysis of the relevant physical properties of visual input.

Evidence indicates (quasi) independent and often antago-

nistic parallel submodalities of processing (an arrangement

usually referred to as ‘channeling’), that in several instances

depend on factors such as selective (linear or nonlinear)

threshold and subthreshold summation. Nonlinearity

appears to be a widespread characteristic of neuronal

mechanisms involved in vision (for instance, simple cells

in V1 feed forward to complex cells with a threshold

nonlinearity according to the canonical model by Hubel and

Wiesel) (Maunsell and Van Essen, 1983; Heeger et al.,

1996; Koch and Segev, 2000). Synchronization and phase

locking to stimulus of segregated cortical neurons respond-

ing to specific properties of visual input (local luminance,

contrast, orientation, color, etc.) are also needed for a proper

cortical activation to occur and an electrophysiological

response to be eventually evoked. Several aspects of this

functional arrangement are consistent with SR theory and

with the results of modeling and experiments (see also

Section 9).

At the retinal level, the sensitivity of bipolar ‘on’ cells is

improved in vertebrates by subthreshold, otherwise

undetectable light stimulation. This effect is mediated by

cGMP-activated membrane channels and improves light

discrimination via a facilitating feedback mechanism that

increases the signal above background noise with charac-

teristics consistent with retinal physiology and compatible

with SR (Shiells and Falk, 2002). Improved detection of

weak signals mediated by processes compatible with SR has

been described in the context-dependent response of

activated cortical cells, whereby enhancement or depression

follow upon weak and strong stimuli respectively, due to the

differential effects of excitatory and inhibitory current and

noise conveyed by the lateral connections (Stemmler et al.,

1995). In primary visual cortex, membrane potential noise

promotes spiking and contributes to the contrast invariance

of orientation tuning (Anderson et al., 2000). Micro-

movements of the eyes reportedly improve visual acuity

with features consistent with SR and have been suggested as

a possible source of internal ‘noise’ contributing to vision

(Hennig et al., 2002).

8. SR and electrophysiological signals

With due approximation, the amplitude and SNR of

electrophysiological mass responses to sensory stimulation

depend on the size and degree of activation of the activated

neural assembly(ies) as well as on synchrony among

responding neurons. Although of common use, ‘signal-to-

noise ratio’ or comparable definitions are in several

instances ambiguous when applied to brain signals (Ryan,

1989; Regan, 1989). Signals such as the spontaneous

background EEG are usually (dis)regarded as ‘noise’ with

respect to stimulus- or event-related electrophysiological

events, in a pragmatic approach that helps deal with

methodological problems like the EEG nonstationarity and

incomplete definition as a signal. However, spontaneous

brain signals reflect neuronal interaction and changes in

brain functional states that can be relevant to sensory

information processing. To assimilate the background EEG

to (‘physiological’) noise with respect to the stimulus- or

event-related responses in a SR paradigm therefore appears

pertinent, but caution and strict control of the experimental

conditions are advisable.

Electrophysiological techniques could therefore provide

privileged approaches to the investigation of SR in the

CNS, also in consideration of the nonlinear characteristics

common to (spontaneous and evoked) brain signals and

distributed nonstationary cortical sources (Nuñez, 1995).

The available evidence seems consistent with this

expectation. In agreement with the noise-enhanced spindle

function (Cordo et al., 1996) and tactile sensation (Collins

et al., 1996a,b), added noise improves the cortical

somatosensory response to mechanical tactile stimulation

in healthy subjects, with an inverted-U function of the

response amplitude at increasing noise amplitudes and

improved SNR at optimal noise levels (Manjarrez et al.,

2002a). Phenomena consistent with SR were observed at

the spinal and cortical stages of the sensory encoding in

anesthetized cats, with the coherence between spinal and

cortical responses to tactile stimulation also following a

SR function that was abolished in cortex but not in spinal

structures after sectioning of the dorsal columns and the

ipsilateral dorsolateral funiculus. This observation has

been interpreted as an indication that SR favors coherence

among interacting neuronal structures/mechanisms and

has a functional role in the CNS (Manjarrez et al., 2002b,

2003).
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Noise effects on the electrophysiological responses to

visual stimulation above threshold match the SR model like

those on perceptual responses to subthreshold visual signals

(see Section 4.1). Optimal noise increased the response

amplitude and power of the first even harmonics of the

cortical response to steady-state contrast stimulation

(steady-state VEPs). This effect was suggested to arise

mainly from activation of complex cells in striate visual

cortex based on the nonlinear properties that these cells and

the steady-state VEPs share (Srebo and Malladi, 1999)

(Fig. 6). Following an alternative approach, white noise and

a rhythmic, transient luminance stimulus were presented

simultaneously and independently to the two eyes arguing

that any SR phenomena observed in the electrophysio-

logical response recorded at occipital locations should

originate in visual cortex. The normalized power density in

the alpha frequency range featured an inverted-U corre-

lation with noise that appears consistent with SR and was

interpreted as reflecting the stimulus/noise-related synchro-

nization of responding neurons (Mori and Kai, 2002).

9. SR and neuronal function

The role of neurons in information processing often

depends on thresholds and nonlinearity of function (Koch

and Segev, 2000). Accordingly, the SR paradigm is

compatible with single-cell models. It actually represents

an early, simple, stochastic neuron model (McCullough

and Pitts, 1943) applying to individual neurons (such as

neocortical pyramidal cells and simple or complex cells of

visual cortex) as well as at the subcellular level (Bulsara

et al., 1991; Bezrukov and Vodyanoy, 1995; Astumian

et al., 1997; Anderson et al., 2000; Rudolph and Destexhe,

2001). The SR paradigm can be extended to ion channels

when described by simple two-state models, as exper-

imentally demonstrated by Bezrukov and Vodyanoy

(1995). Some contiguity among cellular or subcellular

mechanisms and processes occurring in neuronal popu-

lation is conceivable.

9.1. SR and synaptic transmission

‘Internal noise’ can be tentatively defined in models and

single-cell experiments with greater approximation than in

psychophysics studies, and ‘noise’ sources potentially

improving sensory information processing by SR mechan-

isms are numerous in nature. For instance, synaptic

transmission (a nonstationary and nonlinear process

because of varying contributions from depolarizing and

hyperpolarizing currents) is noisy. Noise is a fundamental

aspect of channel gating and also originates from sources

such as fluctuations in the transmitter quanta released by

nerve terminals, number of activated postsynaptic receptors,

ion concentrations, membrane conductance, effects of

previous action potentials, etc. (Traynelis and Jaramillo,

1998; White et al., 1998, 2000; Koch and Segev, 2000).

Synaptic noise affects relatively simple neuronal systems

(such as the discharge of motoneurons depending on the

weighted contributions of multiple inputs; Poliakov et al.,

1996) and even small amounts of synaptic noise from

dendritic synapses improve the response to independent,

subthreshold synaptic stimuli in agreement with the SR

paradigm (Stacey and Durand, 2001). The detection of distal

synaptic inputs by CA1 hippocampus neurons is improved

by noise, and the noise level needed to obtain this effect in

models is comparable to physiological noise in slices and in

vivo (Stacey and Durand, 2000). Changes in applied electric

fields and light levels proved efficient in mimicking

‘intrinsic noise’ in SR studies on in vitro hippocampal

cells and on the caudal photoreceptors of the crayfish,

respectively; instead, the lack of effects of increased

temperature under these experimental conditions points at

Fig. 6. (Left) Superimposed averaged VEPs from one subject (one cycle of stimulation) at the indicated levels of contrast of added noise; the average VEP

amplitude was enhanced by noise by a factor of about 1.6 up to a 30% noise contrast, to be diminished with the noise contrast being increased further. (Right)

Power of the 8 and 16 Hz harmonics as a function of noise contrast, with maximum power around 30% noise contrast; average across 13 subjects. The stimulus

(black and white grating; spatial frequency: 4 cycles/degree; contrast: 20%) was counterphase reversed at 4 Hz (8 reversal/s). Recording from occipital vs.

vertex. Adapted from Srebo and Malladi (1999).
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some requirement for specificity (Pei et al., 1996; Gluckman

et al., 1996).

9.2. SR, neuronal synchronization, phase locking,

and frequency-dependent phenomena

SR enhances phase locking and coherence and promotes

synchronization in neuronal systems, according to simu-

lation studies and experiments (Neiman et al., 1998, 1999;

Bahar et al., 2002; Bahar and Moss, 2003a; Balazsi et al.,

2001; Neiman and Russell, 2002; Tass et al., 2003;

Pikovsky et al., 2001).3 An alternative description based

on accurate systematic theory (Zhou et al., 1990) charac-

terizes SR as a statistical process in which the time

distribution of events is not structured in the absence of

periodic activation, but can be synchronized by external

signals (Neiman et al., 1998). The cells of the electrosensory

organs of the paddlefish rostrum behave like noise-mediated

oscillators that can be synchronized by an external input

(Neiman et al., 1999) (see Appendix A). A correlation

between SR effects and an increase in stochastic phase

synchronization between the neuronal response and a

periodic stimulus has been demonstrated (Bahar and

Moss, 2003a).

These observations are pertinent when investigating

sensory information processing in animals and man. The

recording itself of (electric or magnetic) mass responses to

sensory inputs (and the amplitude and SNR variations

following upon changes in the stimulus properties or brain

state) reflects stimulus-induced or -enhanced phase locking

and synchronization of activated neurons. It is not

inconceivable that the frequency components of the signal

may act like signals or noise depending on function and

conditions (see Section 8). Experiments on the shark

multimodal sensory afferents indicate that the membrane

oscillations near the spike-triggering threshold determine

the basic rhythms of impulse generation, but superimposed

noise actually triggers impulses (Braun et al., 1994). This

observation suggests a functional arrangement whereby

background oscillations and external events cooperate to

determine a response. If applicable to other experimental

conditions, this arrangement appears in agreement with

the functional role suggested for the oscillations in

the ,20–80 Hz frequency interval (‘gamma’ band) that

occur spontaneously due to intrinsic cell properties (Llinás,

1998; Silva et al., 1991; Nuñez et al., 1992) and are

enhanced into coherent spatiotemporal patterns by sensory

(olfactory, auditory, visual) stimulation. These oscillatory

responses are observed in membrane/local field potentials

and spiking rate as well as in (macro)electrodes or

neuromagnetic recordings and are thought to mediate in

stimulus-induced neuronal synchronization through inter-

neurons/pyramidal cell coupling (see for reference: Gray

and Singer, 1989; Gray and McCormick, 1996; Engel et al.,

1992; Singer, 1993; Traub et al., 1999; Sannita, 2000, 2003).

In visual cortex, both oscillatory mass responses phase-

locked to stimulus (that reflect its physical properties with

dynamics anticipating the VEPs) (Sannita et al., 1995, 1999;

Sannita, 2000; Tzelepi et al., 2000; Narici et al., 2003) and

gamma activities with longer latencies (,280 ms or above)

and no phase locking to stimulus have been described and

can coexist. The latter activity is observed in concomitance

of ‘cognitive’ processes involving selective attention,

focused arousal, visuomotor integration, etc., with different

topographic distribution than the phase-locked response

(see for reference: Singer and Gray, 1995; Tallon-Baudry

and Bertrand, 1999; Sannita, 2000). The suggested core

function is to provide spatiotemporal mechanisms by which

the activity in separate cortical columns or regions is

temporarily coordinated (Gray and Singer, 1989; Engel

et al., 1992; Singer, 1993; Sannita, 2000). A role as ‘cortical

information carrier’ has been proposed (Bressler, 1990) that

would be consistent with SR theory (Sannita, 2000). The

SNR curve in neuronal networks depends in fact on the

signal frequency, whereby SR is a possible frequency-

dependent amplification mechanism (Gluckman et al.,

1996). Models including interneurons and electric synapses

describe stimulus-related modulation from low to higher

frequencies and synchronization in the ,20–80 Hz interval

(Di Garbo et al., 2002). The hypothesis that SR may

specifically regulate the oscillatory responses and synchro-

nization in this frequency range (as suggested by Gluckman

et al., 1996) remains undocumented. The concept can

nevertheless expand to include the nonlinear phenomena

and chaotic behavior of neocortical dynamics and signals

structure and their physiological implications. A detailed

treatment of the issue is given by Nuñez (1981, 1995).

10. SR and models of brain function

The results of most experiments on SR and the effects

of noise on sensory functions match those of modeling

and simulation, circumstantially supporting a close

relationship between neuronal mechanisms and SR

theory. The embodiment of SR processes in the real

brain is a different matter, however, as the variety of SR

observations that relate to brain may not specifically

indicate a function. Despite indication that noise occurs

3 Synchronization occurs when a nonlinear oscillator with a stable limit

cycle is subjected to an external time-dependent force or is coupled with

another oscillator. It is usually understood as the locking between

instantaneous phases of a state variable of the oscillator and depends on

the circuit natural frequency (Neiman et al., 1998; Brown and Kocarev,

2000). In neuroscience it is often referred to as a ‘neural activity at any level

of congruence above that of coincidence in a fraction of the neighboring

generators or a volume of tissue, in broad-band range or in a defined

frequency band’, without required agreement in phase across frequency

bands. Coherence implies that: (1) two neurons (or neuronal aggregates)

have a component of the energy at a given frequency following a common

driver; (2) one drives the other; (3) they reciprocally cooperate; or (4) there

are common characteristics with a phase delay that is constant over time

(Bullock and McClune, 1989).
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naturally, to identify ‘internal’ noise in the CNS and to

incorporate in the SR theory any of the possible sources

of neuronal noise (ion channel or synaptic noise, noise

built into the stimulus, light, eye micro-movements, etc.;

Stemmler et al., 1995; Pei et al., 1996; White et al.,

1998, 2000; Traynelis and Jaramillo, 1998; Stacey and

Durand, 2000, 2001; Shiells and Falk, 2002; Hennig

et al., 2002) remains a major and still unresolved

problem. Once ‘internal’ noise originating from any

source is defined, also crucial is how to change it in the

brain under experimental control or to monitor and relate

to function its spontaneous or state-related fluctuations.

The issue regarding a possible role of SR in evolution is

also critical. SR has been connected with the evolution

of the frog auditory system (Jaramillo and Wiesenfeld,

1998). However, the hypothesis that any (neuronal)

system has evolved an internal, or natural, noise optimal

for some general process (including sensory information

processing) has never been tested experimentally under

controlled conditions and may hardly be.

A cautious interpretation of the available evidence is that

there is no unambiguous demonstration that naturally

occurring noise actually enhances information transmission

and processing, nor is it documented that neuronal systems

do optimize the noise intensity for maximum information or

efficacy of processing. Yet some indication that SR models

may reflect mechanisms that are operative in the CNS seems

to exist and justifies research. The caveats mentioned above

and the requirements for experimental demonstration

notwithstanding, SR appears to be a ubiquitous and

remarkable phenomenon congruent to the available theories

on brain function (e.g. Nuñez, 1995; Tass, 1999), with

widespread potentialities in both biological and medical

protocols and a privileged field of application in

neuroscience.
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Appendix A. SR in predator avoidance and

at the perceptive level in feeding behavior

The tail-fan of crayfish is covered with hydrodynami-

cally sensitive hairs, each one innervated by sensory

neurons that converge on interneurons in the sixth ganglion

(upper panel of Fig. A1). Recorded spike trains from the

sensory neurons of the crayfish during periodic stimulation

are similar to those shown in the paradigm described in

Section 2.1 and Fig. 1, with the measured SNRs (obtained

from the power spectra of the measured spike trains)

showing a maximum at an optimal noise intensity (lower

panel of Fig. A1, triangles). This behavior was also

mimicked by an electronic analog simulator of a model

neuron (Moss et al., 1993; lower panel of Fig. A1,

diamonds). The experiment was repeated with many

improvements using the cercal system of the cricket, a

non-aquatic animal of the same phylum as the crayfish with

a very similar neural architecture for predator avoidance

based on the perception of air motion (Levin and Miller,

1996). Results were similar in the two experiments, the

major difference being the sensitive frequency ranges (6–15

and 90–150 Hz for the crayfish and cricket, respectively).

The passively electrosensitive paddlefish features a long

anterior rostrum, which is covered with tens of thousands of

electrosensitive organs that detect and track the weak

electric fields generated by the swimming and feeding

motions of its favorite prey zooplankton Daphnia (Wilkens

et al., 1997). The electric field around the Daphnia is dipole-

shaped. Thus, the further individual plankton is from the

rostrum, the weaker the electrical signature at the rostral

surface, dropping beneath the animal’s perceptive threshold

at some limiting distance. The animal’s perceptive abilities

in the presence of a weak signal from prey are improved

when external noise is added in the form of a random

electric field applied parallel to the fish long axis (Russell

et al., 1999; top panel of Fig. A2). The results of this study

support the hypothesis that these subthreshold signatures

Fig. A2. Diagram of the paddlefish Polyodon spathula swimming in the swim mill between a pair of parallel plate electrodes. A weak (0.1–100 mV/cm) noisy

electric field was generated across the fish. The locations of Daphnia crossing a plan perpendicular to the tip of the rostrum (radius d measured from the origin

at the tip) are marked as shown in the lower panels (left panel: captures in the presence of optimal noise; right panel: captures with no noise). Adapted from

Russell et al. (1999).
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can be enhanced by externally added electrical noise, and

that the fish would be able to extend the distance range of its

capture distribution in the presence of optimal noise

(Russell et al., 1999, 2001; Freund et al., 2002) (see bottom

panel of Fig. A2).
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