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Psychophysical estimates of the number of
spectral-reflectance basis functions needed to

reproduce natural scenes
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Theoretical analyses of spectral reflectances of natural surfaces suggest that their perceived colors can be well
reproduced by approximations comprising combinations of three or four spectral basis functions. The aim of
the present work was to assess psychophysically the number of basis functions necessary to reproduce entire
natural outdoor scenes. Hyperspectral images of 20 such scenes were each subjected to a principal component
analysis and then reproduced with a variable number of basis functions. The quality of the color approximation
under daylight illumination was quantified theoretically in CIELAB space and psychophysically by spatial and
temporal two-alternative forced-choice measurements in which the original and the approximated images were
compared on a calibrated color monitor. Although five basis functions produced on average unit error in
CIELAB space, original images were visually indistinguishable from their approximations only if there were at
least eight basis functions. The combination of the spectral diversity of the natural world and the observed
levels of color discrimination suggest that estimates of the minimum number of basis functions necessary to
reproduce natural scenes may need to be revised upward. © 2005 Optical Society of America

OCIS codes: 330.0330, 330.1720, 330.1730, 330.5510.
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. INTRODUCTION
he physical causes of surface color are generally well
nderstood,1 and part of this understanding is that sur-
ace spectral reflectances are sufficiently constrained that
hey may be adequately approximated by low-
imensional models,2–5 as indeed may daylight illumi-
ant spectra.6–8 The dimensionality of the model refers to
he number of basis functions that in linear combinations
enerate the set of reflectance or illuminant spectra. The
articular value of this number is important in the gen-
ration of compact descriptions of the data9 and for cer-
ain approaches to color perception10,11 where a correlate
f surface spectral reflectance is to be extracted, allowing
olor constancy under illuminant changes.

Computational studies based on collections of surface
pectral reflectances not weighted by their frequencies of
ccurrence in nature have suggested that the minimum
umber of basis functions needed to represent reflectance
pectra varies from five to eight,3–5 but when spectra are
eighted by their frequencies of occurrence in some natu-

al scenes this number may fall to three.12

When the goodness of fit of an approximation is modi-
ed to take into account the nonuniform spectral sensitiv-

ty of the eye,9 the number of basis functions is reduced by
1.3 Thus in an ideal-observer analysis13 three or four ba-

is functions were found to be enough to reproduce visu-
lly indistinguishable reflectance spectra. For natural
aylight spectra, three basis functions6,7 have been as-
1084-7529/05/061017-6/$15.00 © 2
umed sufficient for good reproduction, although more
ay be necessary in some circumstances.14

Curiously, all these estimates of the minimum number
f basis functions needed to represent reflection spectra
ere obtained by theoretical methods. Apart from studies
y Oxtoby and co-workers with Munsell surfaces,15–17 the
uestion of how many basis functions are actually re-
uired seems not to have been addressed empirically.
In this study psychophysical methods were used to as-

ess the adequacy of linear approximations of reflectance
pectra of surfaces in natural images, which were ob-
ained with a hyperspectral imaging system and dis-
layed on a calibrated color monitor. In accordance with
tandard practice,3,4,12,13,18–23 principal component analy-
is (PCA) was used to obtain the basis functions, and, for
ase of comparison with previous studies, approximations
ere not modified to accommodate the nonuniform spec-

ral sensitivity of the eye. The use of PCA rather than any
ther decomposition procedure seems not too critical, as is
ade clear later. It was found that natural scenes illumi-
ated by daylight require at least eight PCA basis func-
ions for their approximations to be visually indistin-
uishable from an original.

. METHODS
. Images
yperspectral images were captured with a progressive-

canning monochrome digital camera (Pulnix TM-1010,
005 Optical Society of America
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ulnix America Inc., Sunnyvale, Calif.) with a CCD array
f 102431024 pixels that, with an attached lens–filter
ystem, produced an angular resolution of
1 arcmin per pixel. The intensity response at each pixel
as recorded with 10-bit precision. Mounted in front of

he lens was a tunable birefringent filter (VariSpec, model
S-VIS2-10HC-35-SQ, Cambridge Research and Instru-
entation, Inc., Boston, Mass.) whose wavelength of peak

ransmission could be electronically tuned over the range
00–720 nm with a FWHM transmission of 10 nm at
00 nm. Scenes were sampled at intervals of 10 nm over
his wavelength range. Each complete set of 33 spectral
mages took between 5 and 15 s to acquire, depending on
he light levels on the scene.

After correction for dark noise and transmission effects
f the lens–filter system, the reflectance spectrum at each
ixel element was estimated by normalizing the nominal
adiance spectrum at that point against that of a neutral
tandard, a small gray object placed in the scene and hav-
ng a flat reflectance spectrum (further details of the ap-
aratus and image processing are given in Nascimento et
l.24). The illumination was assumed to be spatially uni-
orm, and those scenes failing this condition were ex-
luded. For the purposes of computation and display, all
mage data were sampled to one third of the maximum
esolution.

Twenty scenes were used in this study: ten of nonculti-
ated rural scenes in the Minho region of Portugal con-
aining rocks, trees, foliage, grass, and earth, and ten ur-
an scenes containing buildings and room contents.24 All
mages were collected during the summers of 1999 and
000 under daylight between midmorning and midafter-
oon. Scenes were illuminated by direct sunlight in clear
r nearly clear sky.

The set of reflectance spectra for each individual scene
as subjected to PCA, from which eight approximations
ere synthesized based on 1, 2,…, 8 principal compo-
ents, each defined about the mean spectrum.25,26 This
pper limit of eight on the number of components tested
as based on the calculation that eight basis functions ac-

ounted for more than 99% of the variance in the spectra
nd on the previous finding that as many as eight compo-
ents (defined about zero) are needed to achieve a low-
rror reconstruction of the Munsell spectra.4

Each original scene and its approximations were as-
umed to be illuminated by a common illuminant, namely
IE Standard Illuminant D65, which was close to that il-

uminating the scene during image acquisition. The re-
ulting images were displayed on a calibrated color moni-

Fig. 1. Reproduction of an original scene under D65 and
or. Only images for which more than 99% of the pixels
ould be displayed within the gamut of the monitor after
uminance scaling were used. The pixels out of gamut
ere not clustered together and were displayed by clip-
ing to the closest RGB values for both original images
nd approximations.
Each set of principal components was derived for each

ndividual scene rather than for all 20 scenes as a whole
n order to relate scene content more easily to the mini-

um number of basis functions needed to represent it.
asing the PCA on all 20 scenes instead would have pro-
uced higher minimum numbers of components than
hose reported here, as would including the 1% of pixels
ut of gamut and relaxing the constraint that scenes
hould have almost uniform illumination.

As expected, images reconstructed with just one compo-
ent were monochrome and as the number of components

ncreased, the original chromatic content was restored
Fig. 1).

. Psychophysics
mages were displayed on a 17-in., RGB color monitor
ith flat screen (Trinitron, model GDM-F400T9; Sony
orp., Tokyo, Japan) controlled by a computer raster-
raphics card providing 24 bits per pixel in true-color
ode (VSG 2/5; Cambridge Research Systems, Rochester,
K). Screen resolution was 8003600 pixels and refresh

ate was <80 Hz. A telespectroradiometer (SpectraColo-
imeter, PR-650; Photo Research Inc., Chatsworth, Calif.)
hose calibration could be traced to the UK National
hysical Laboratory was used to regularly calibrate the
isplay system. Images subtended 3–4 deg visual angle.
hey had an average luminance of 8–15 cd m−2, depend-

ng on the scene, and were displayed in a darkened room.
The performance of observers in discriminating be-

ween an original image and its approximation with a
ariable number of components was tested in two differ-
nt two-interval experiments: In one the images for com-
arison were presented simultaneously; in the other, they
ere presented sequentially (Fig. 2). In the two-interval

imultaneous procedure [Fig. 2(a)] pairs of images were
resented side-by-side, separated by 0.75 deg, in each of
wo temporal intervals. In one temporal interval, the pair
onsisted of two identical original images; in the other
emporal interval, the pair consisted of the original and
n approximation reconstructed from a specific number of
omponents. Each temporal interval lasted for 5 s with a
-s interval separating them when the screen was dark.
he total stimulus duration was therefore 11 s. In the

ximations based on 1, 2, and 4 spectral basis functions.
appro
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wo-interval sequential procedure [Fig. 2(b)] the images
n each pair were presented sequentially for 1 s each in
he same position on the screen, with an interval between
he pair also of 1 s. The total stimulus duration was
herefore 5 s. In both procedures, the observer had to in-
icate the interval, first or second, containing the approxi-
ation. Observers were not instructed to fixate specific lo-

ations.
The use of the indistinguishability of an approximation

rom the original is a stringent criterion. Other possible
riteria, such as perceived realism, would require fewer
asis functions, but would make the results of this work
ore difficult to compare with previous theoretical and

omputational predictions.
In each experimental session twenty scenes with eight

pproximations of each scene were tested. In each trial
he number of components in the approximation and the
patial or temporal ordering of the approximation (left or
ight, and first, second, third, or fourth interval) were cho-
en randomly. The ordering of scenes was balanced over
essions. The simultaneous procedure and the sequential
rocedure were used in different sessions. Each observer
erformed at least 15 trials for each of the eight approxi-
ations of any individual scene.
Three observers, JL, FS, and PP, participated in the ex-

eriment, and all were unaware of its purpose. Each had
ormal color vision as assessed with the Farnsworth–
unsell 100-Hue test and Ishihara plates, and each had

ormal Snellen acuity.

. RESULTS
o quantify the colorimetric quality of the approximations
nd provide a comparison with previous data,5 an average
olor difference was calculated between each original im-
ge and its approximation in terms of the usual Euclidean
istance in CIELAB space, with white point a perfect re-
ecting diffuser under the same CIE Standard Illuminant
65 used to illuminate the scenes for display purposes.
hus if pixel i of the original image had CIELAB coordi-
ates sLi

* ,ai
* ,bi

*d and the approximation had CIELAB co-
rdinates sL̂i

* , âi
* , b̂i

*d, then the average color difference,
Eab

* say, over the N pixels of the image is given by

DEab
* =

1

No
i=1

N

fsLi
* − L̂i

*d2 + sai
* − âi

*d2 + sbi
* − b̂i

*d2g1/2.

igure 3 shows DEab
* as a function of the number n of

omponents used in each approximation calculated over
he ten rural scenes (squares) and over the ten urban

Fig. 2. Simultaneous and sequent
cenes (triangles), and Table 1 shows the corresponding
umerical values. The color difference decreased as n in-
reased, reaching unity at n=6. Rural and urban scenes
roduced closely similar color differences. Even at n=8,
owever, DEab

* was a little larger than 0.5, a level similar
o that reported by Vrhel et al.5 The proportion of the pix-
ls with DEab

* .3, corresponding to clearly discriminable
olors, is also shown in Table 1. Even with the best ap-
roximation, 2%–3% of the images were on average dis-
inguishable by this measure.

Consider now the psychophysical data. Figure 4 shows
s an example one observer’s discrimination of a rural
cene from its approximations with the sequential proce-
ure. The symbols show percent-correct discrimination
ased on 15 trials per level as a function of the number n
f components in each approximation. With three or fewer
omponents, this observer was able to discriminate the
riginal image from the approximation in almost all tri-
ls; but as n increased, discrimination performance de-
reased, reaching chance levels, that is, 50%, near n=8.

To estimate more precisely the number of components
or which a scene and its approximation become indistin-
uishable, a smooth curve was fitted to the data by locally
eighted logistic regression.27 The bandwidth of the local
tting procedure was determined by cross validation, con-
trained to exclude nonmonotonic fits. For two criterion
evels of performance of 75% and 55% correct, threshold
umbers of components of n75% and n55%, respectively,

cedures for stimulus presentation.

ig. 3. Average CIELAB color difference DEab
* between original

nd PCA-approximated images as a function of the number n of
omponents in each approximation, calculated over ten rural
cenes (squares) and over ten urban scenes (triangles). Overlap-
ing points have been slightly displaced horizontally.
ial pro
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ere obtained from the fitted curve (as illustrated in Fig.
). The level of 55% was a compromise between the sta-
ility of the threshold estimate and the closeness of the
riterion to the true chance level of 50%.

For each observer, thresholds were thereby obtained
rom data pooled over rural scenes and data pooled over
rban scenes. Standard errors (SEs) for each class of
cenes were estimated from a bootstrap resampling with
eplacement over scenes and based on 1000 replications
ather than by binomial resampling (see Ref. 28). Figure
shows the results for simultaneous and sequential ex-

erimental procedures. Thresholds were systematically
ower for rural scenes than for urban scenes, but there
as no difference in the effects of simultaneous and se-
uential procedures. Taken over subjects and procedures,
he mean threshold s±1 SEd for a criterion level of 75%
as 5.1±0.2 for rural scenes and 6.4±0.3 for urban

cenes, and, for a criterion level of 55%, it was 8.0±0.3 for
ural scenes and 8.5±0.4 for urban scenes. Notice that
hese SE estimates refer to the variability of scenes, not
bservers.

. DISCUSSION
ontrary to the implications of some theoretical analyses,
pproximations of spectral reflectances of natural sur-
aces need more than just three or four spectral basis
unctions to be acceptable visually. In fact, as the experi-
ents here have shown, at least eight basis functions

eem necessary for the colors of daylight-illuminated
atural scenes to be indistinguishable from their approxi-
ations.
What is the origin of this disparity? Two factors, at

east, are critical. First, there is the problem of sampling
ensity. Previous theoretical estimates of mean or maxi-
um CIELAB color differences DEab

* with synthetic or
atural spectra have not taken into account their fre-
uencies of occurrence in nature (one previous frequency-
ased analysis12—of spectra from forests and coral
eefs—used proportion of variance explained rather than
olorimetric estimates of perceived color difference). The
act that even with eight components in the approxima-
ions the mean values of DEab

* were still larger than 0.5,
nd that <2–3% of the images had DEab

* .3 (Fig. 3 and
able 1) suggest that the approximations may still have
een inadequate visually.

Table 1. Quality of Colorimetric Approxim

Colorimetric
Quantities 1 2 3

ural scenesa

DEab
* 6.0 4.7 3.7

PsDEab
* .3d 0.7 0.6 0.4

rban scenesa

DEab
* 7.5 4.7 3.6

PsDEab
* .3d 0.7 0.5 0.4

aThe entriesDEab
* represent the mean CIELAB color difference across scen

ata are based on ten rural scenes and ten urban scenes.
ations as a Function of Number of Components

Number of Components

4 5 6 7 8

2.6 1.7 1.1 0.9 0.7
0.3 0.1 0.06 0.03 0.02

2.4 1.5 1.1 0.9 0.8
0.2 0.1 0.07 0.04 0.03

es andPsDEab
* .3d the proportion of pixels where the CIELAB color difference is greater th
ig. 4. Discriminability of original and PCA-approximated im-
ges by one observer. Percent-correct discrimination based on 15
rials per level is plotted (circles) as a function of the number n of
omponents in each approximation. The smooth curve is a locally
eighted logistic regression. Chance level is 50%. For two crite-

ion levels of performance of 75% and 55%, threshold numbers of
omponents of n75% and n55% are indicated by crosses on the ab-
cissa. Images were of a rural scene, the stimulus presentation
ig. 5. Threshold numbers of components for discriminating
riginal and PCA-approximated images. For two criterion levels
f performance of 75% and 55% correct, thresholds n75% and n55%
re shown for ten rural and ten urban scenes, three observers,
nd simultaneous and sequential stimulus presentations. Error
ars represent ±1 SE estimated from a bootstrap based on 1000
eplications with resampling over scenes.
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Second, there is the potential confounding effect of spa-
ial structure on color discrimination. The salience or oth-
rwise of poorly approximated spectral reflectances in
atural scenes can only be determined empirically. Nu-
erically small errors may assume a much larger visual

ignificance when present in real scenes. The actual na-
ure of those scenes had only a modest effect here, in that
.5–1.3 more components were needed with urban scenes
han with rural scenes to elicit similar levels of discrimi-
ation. This increase may be attributable to urban scenes
eing chromatically richer and more complex than rural
cenes.

Although not tested here, an effect of scene size might
lso be expected. In normal viewing, visual fields can be
ery large, and the small residuum of clearly distinguish-
ble approximations with eight components obtained with
he 3–4 deg viewing angle used here might be expected to
ise markedly with unrestricted viewing angles.

The particular procedure by which the scenes were pre-
ented for comparison, that is, across space or across
ime, proved immaterial.

There is, however, a general issue concerning the rel-
vance of decompositions of spectra by PCA. It seems that
CA is not itself special, in that experiments like those re-
orted here but with Mondrian arrays of Munsell
urfaces17 have shown that there is little difference in the
inimum number of components whether determined by
CA, by independent component analysis, or by artificial
eural networks, although other methods of obtaining ba-
is functions, such as nonnegative matrix factorization,29

ay give different results. More important, as Vrhel et
l.5 have emphasized, PCA does not minimize the color
ifference DEab

* . A set of basis functions specifically
atched to some color-difference metric might yield a

ower minimum.
As a final point, recall that each set of components was

ere derived for each individual scene. If PCA had been
pplied to the pooled sets of 10 rural scenes and 10 urban
cenes, or indeed to all 20, then it is very likely that the
inimum number would have been larger still. In gen-

ral, for images of natural scenes to be reproduced by
ombinations of basis functions so that they are visually
ndistinguishable from their originals, more than eight
uch functions may well be necessary in any application.

CKNOWLEDGMENTS
his work was supported by the Fundação para a Ciência
Tecnologia (grant POSI/SRI/40212/2001), by the Centro
e Física da Universidade do Minho, Braga, Portugal, and
y the Engineering and Physical Sciences Research Coun-
il, UK. Parts of this work were reported at the Annual
eeting of the Association for Research in Vision and
phthalmology, 2001, Fort Lauderdale, Florida,30 and at

he European Conference on Visual Perception, 2000,
roningen, The Netherlands.31

Corresponding author Sérgio Nacimento can be
eached by email at smcn@fisica.uminho.pt, by phone at
51-253-604320, or by fax at 351-253-678981.
EFERENCES
1. K. Nassau, The Physics and Chemistry of Color. The Fifteen

Causes of Color (Wiley, New York, 1983).
2. J. Cohen, “Dependency of the spectral reflectance curves of

the Munsell color chips,” Psychonomic Sci. 1, 369–370
(1964).

3. L. T. Maloney, “Evaluation of linear models of surface
spectral reflectance with small numbers of parameters,” J.
Opt. Soc. Am. A 3, 1673–1683 (1986).

4. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen,
“Characteristic spectra of Munsell colors,” J. Opt. Soc. Am.
A 6, 318–322 (1989).

5. M. J. Vrhel, R. Gershon, and L. S. Iwan, “Measurement and
analysis of object reflectance spectra,” Color Res. Appl. 19,
4–9 (1994).

6. D. B. Judd, D. L. MacAdam, and G. Wyszecki, “Spectral
distribution of typical daylight as a function of correlated
color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964).

7. J. Romero, A. García-Beltrán, and J. Hernández-Andrés,
“Linear bases for representation of natural and artificial
illuminants,” J. Opt. Soc. Am. A 14, 1007–1014 (1997).

8. C. C. Chiao, D. Osorio, M. Vorobyev, and T. W. Cronin,
“Characterization of natural illuminants in forests and the
use of digital video data to reconstruct illuminant spectra,”
J. Opt. Soc. Am. A 17, 1713–1721 (2000).

9. D. H. Marimont and B. A. Wandell, “Linear-models of
surface and illuminant spectra,” J. Opt. Soc. Am. A 9,
1905–1913 (1992).

0. M. D’Zmura and G. Iverson, “Color
constancy. III. General linear recovery of spectral
descriptions for lights and surfaces,” J. Opt. Soc. Am. A 11,
2389–2400 (1994).

1. L. T. Maloney, “Physics-based approaches to modeling
surface color perception,” in Color Vision: From Genes to
Perception, K. R. Gegenfurtner and L. T. Sharpe, eds.
(Cambridge U. Press, Cambridge, UK, 1999), pp. 387–416.

2. C. C. Chiao, T. W. Cronin, and D. Osorio, “Color signals in
natural scenes: characteristics of reflectance spectra and
effects of natural illuminants,” J. Opt. Soc. Am. A 17,
218–224 (2000).

3. J. L. Dannemiller, “Spectral reflectance of natural objects:
how many basis functions are necessary?” J. Opt. Soc. Am.
A 9, 507–515 (1992).

4. J. Hernández-Andrés, J. Romero, J. L. Nieves, and R. L.
Lee, “Color and spectral analysis of daylight in southern
Europe,” J. Opt. Soc. Am. A 18, 1325–1335 (2001).

5. E. K. Oxtoby, D. H. Foster, K. Amano, and S. M. C.
Nascimento, “How many basis functions are needed to
reproduce coloured patterns under illuminant changes?”
Perception S31, 66 (2002).

6. E. K. Oxtoby, D. H. Foster, and R. C. Baraas, “How many
spectral basis functions do red-green dichromats need to
discriminate surface colours under different lights?”
Perception S32, 147 (2003).

7. E. K. Oxtoby and D. H. Foster, “Perceptual limits on
low-dimensional models of Munsell reflectance spectra” (to
be published).

8. T. Jaaskelainen, J. Parkkinen, and S. Toyooka, “Vector-
subspace model for color representation,” J. Opt. Soc. Am. A
7, 725–730 (1990).

9. M. H. Brill and G. West, “Chromatic adaptation and color
constancy: a possible dichotomy,” Color Res. Appl. 11,
196–204 (1986).

0. L. T. Maloney and B. A. Wandell, “Color constancy: a
method for recovering surface spectral reflectance,” J. Opt.
Soc. Am. A 3, 29–33 (1986).

1. G. Buchsbaum, “A spatial processor model for object colour
perception,” J. Franklin Inst. 310, 1–26 (1980).

2. M. D’Zmura and P. Lennie, “Mechanisms of color
constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).

3. M. J. Vrhel and H. J. Trussell, “Color correction using
principal components,” Color Res. Appl. 17, 328–338 (1992).

4. S. M. C. Nascimento, F. P. Ferreira, and D. H. Foster,
“Statistics of spatial cone-excitation ratios in natural
scenes,” J. Opt. Soc. Am. A 19, 1484–1490 (2002).



2

2

2

2

2

3

3

1022 J. Opt. Soc. Am. A/Vol. 22, No. 6 /June 2005 Nascimento et al.
5. Principal components of spectral data can be calculated
about the mean spectrum or about the zero spectrum. For a
discussion of the two methods, see Ref. 26.

6. M. H. Brill, “A non-PC look at principal components,” Color
Res. Appl. 28, 69–71 (2003).

7. C. Loader, Local Regression and Likelihood (Springer, New
York, 1999).

8. D. H. Foster and W. F. Bischof, “Thresholds from
psychometric functions: superiority of bootstrap to
incremental and probit variance estimators,” Psychol. Bull.

109, 152–159 (1991).
9. G. Buchsbaum and O. Bloch, “Color categories revealed by
non-negative matrix factorization of Munsell color spectra,”
Vision Res. 42, 559–563 (2002).

0. S. M. Nascimento, D. H. Foster, and K. Amano, “Repro-
duction of colors of natural scenes by low-dimensional
models,” Invest. Ophthalmol. Visual Sci. 42, S720
(2001).

1. S. M. C. Nascimento and D. H. Foster, “Chromatic quality
of natural scenes represented by low-dimensional
approximations to reflectance functions,” Perception S29,

72 (2000).


