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In this paper I discuss how synchronisation among neurons is affected by noise. Synchronisation of model neurons,
which are basically autonomous relaxation oscillators, is enhanced by the addition of low levels of current noise and
destroyed by the addition of higher levels of noise. Such neural stochastic resonance also occurs among neural
networks in living systems at least at two functionally important scales, both within local networks and between the
larger neuronal groups that are thought to implement complex cognitive and perceptual processes.
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1. Introduction

Brains are not mean fields. This complicates a physical
description of the brain’s dynamics. Although brains
are densely interconnected, indeed a brain’s neurons
probably constitute a connected graph, all structural
connections are not functionally relevant at the same
time (Figure 1). Moreover, connections among in-
dividual neurons are usually one-way, whereas
connections between neuronal groups are typically
two-way. Complex perceptual and cognitive processes
such as seeing, hearing, attention, memory, and
consciousness are likely implemented in the brain by
networks of neuronal groups, consisting of function-
ally specialised regions that connect transiently in
various subsets depending on the process involved.
How these functional connections can form and
dissolve over periods of hundreds of milliseconds is
one of the central mysteries of neuroscience. One
prominent, although still controversial, theory of this
mechanism is that neuronal groups are functionally
connected when their neurons synchronise at particu-
lar oscillation frequencies, allowing for efficient in-
formation exchange and maximal mutual influence [1—
3]. Although little is yet known about the details of
such a process, there is growing evidence that neural
synchrony is deeply involved in the brain’s operations.

Synchronisation of oscillators is a physical concept
that has been studied at least since Huygens discovered
that mechanical clocks weakly coupled by being
attached to the same wooden board came to tick in
precise anti-phase after a while, regardless of their
relative phases when started [4]. Fundamentally,
neurons are autonomous relaxation oscillators, and

connected groups of neurons in separated brain
regions act as autonomous phase oscillators. Thus,
physical understanding of synchronous oscillations can
be applied to the study of neural synchronisation in the
brain. Importantly, noise dramatically affects synchro-
nisation of oscillators, including neural oscillators,
enhancing it at low levels and destroying it at high
levels, thus displaying the signature of stochastic
resonance. In this paper I review basic concepts of
synchronisation and stochastic resonance and their
application to the problem of understanding how
stochastic resonance might modulate, or even mediate,
neural synchronisation in the human brain.

2. Stochastic resonance

Stochastic resonance was first conceptualised as a way
to explain the roughly periodic recurrences of the
Earth’s Ice Ages [5,6]. In this scenario a very weak
sinusoidal oscillation of the Earth’s orbit about the sun
was magnified by a stochastic resonance with the Sun’s
noisy energy output into long periods of below normal
temperatures followed by long periods of above
normal temperatures at the Earth’s surface, leading
to a series of Ice Ages occurring at roughly 100,000-
year intervals. The critical aspect of this system is its
nonlinearity: a very small change in total energy flux
causes a jump from one state (‘warm Earth’) to
another very different state (‘cold Earth’) because of
a resonance between a stochastic process (the Sun’s
noisy energy output) and a weak oscillation, whence
the name stochastic resonance (henceforth SR). The
simplest model of such a dynamic system is a weakly
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Figure 1. Magnetic resonance diffusion tensor imaging displays of a few of the many connective pathways in the human brain.
(a) Sagittal slice through brain and spinal cord (image in public domain at http://en.wikipedia.org/wiki/Image:DTI-sagittal-
fibers.jpg); (b) pseudo-3D view from posterior (image courtesy of Dr Martin Domin, Ernst-Moritz-Arndt University, Greifswald,
Germany, and Dr Lars Linsen, Jacobs University, Bremen, Germany). Colour code indicates 3D directionality of fibre tracts:
green indicates fibres running along the anterior-posterior direction, blue indicates the superior-inferior direction, and red
indicates the left-right direction.

oscillating two-well potential with random energy
additions according to a Gaussian probability dis-
tribution (Figure 2). The total energy in the system can
be expressed by V(7)) = a sin(wt) + &,(f), where &,(7)
represents samples of Gaussian noise. The rate of
hopping from one well to the other caused by the noise
in the absence of the oscillation is expressed by
Krameér’s equation: r = ¢ exp(—AV/c), where o is
the standard deviation of the noise distribution, AV is
the energy barrier separating the wells, and ¢ is a
constant depending on the particular physical system
realising the potential wells. The average time between
hops is the inverse of Kramér’s equation, Ty, = c’exp
(AV/o). When Ty, = T,/2, where T,, is the period of
the oscillation, the stochastic hopping process becomes
synchronised with the weak oscillation. This and more
complicated forms of dynamic SR are ubiquitous in
the physical world; many such systems are described
and explained in more detail in [7]. Because neurons
and neural groups are oscillators they too can engage
in dynamic SR. In the present case, however, we are
interested in synchronisation between several oscilla-
tors mediated by a stochastic process rather than
simply that between a stochastic process and an
oscillator.

Neurons can also exhibit a simpler form of SR
called ‘non-dynamical’ or ‘threshold’ SR. Here the
critical ingredients are a threshold (generally an energy

barrier of some sort), a weak, sub-threshold signal, and
noise. When the noise, the threshold and the signal are
all tuned appropriately (Figure 3), the noise induces
threshold crossings preferentially at peaks of the signal
oscillation [8,9]. In the case of neurons, action
potentials (or spikes: brief pulses of cell membrane
depolarisation that travel down the axon) are gener-
ated in neurons only when a threshold potential
around —50 mV at the base of the cell body (soma)
is exceeded. This can happen both spontaneously and
because of post-synaptic potentials generated by spikes
arriving at synapses between a neuron and other
neurons. Adding a small amount of random current
input to neurons, both peripheral sensory ones and
also more central ones, enables them to fire bursts of
spikes at the peaks of sub-threshold oscillating inputs
(see [9] for a review). Moreover, networks of neurons
become synchronised more readily when a small
amount of noise is present. In order to understand
how this happens, 1 will first briefly review some
concepts of synchronisation and then discuss how
synchronisation of neurons is affected by the addition
of noise.

3. Synchronisation of weakly coupled oscillators

For present purposes, synchronisation is taken to be the
adjustment of rhythms of self-sustained oscillating
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Figure 2. (a) Double well potential with energy barrier AV.
(h) Weak oscillation of potential at frequency o transiently
reduces the barrier periodically, making it easier for the
system to hop from one well to the other. When o is resonant
with the average hopping time from the added random
energy kicks, the hopping occurs preferentially in the
indicated direction at the indicated times, a dynamic
stochastic resonance. Reprinted with permission from [7].
© (1998) by the American Physical Society.

systems caused by their interaction (cf. [4]). The exact
state of any self-sustained periodic oscillator can be
described precisely by specifying its phase, ¢, in
radians, from 0 to 27 [4]. Although phase grows with
time it is usually treated as a cyclic variable, that is, it
jumps back to zero after it reaches 27, and thus can be
visualised as going around a circle. In any situation in
which two oscillators maintain a fixed phase difference,
¢1— ¢> = ¢, for some period of time, the oscillators are
said to be synchronised, even if they are out of phase
(¢p1— 2 # 0). When the phases change independently
of each other, the oscillators are not synchronised,
although they may occasionally have the same phase.
Synchronisation of oscillators with similar natural
frequencies happens when they are weakly coupled
for a sufficient duration because each influences the
other by perturbing (advancing or retarding) its phase,
tending to maintain the phases of the oscillators in
a fixed relationship and their oscillation frequencies,

5

Fisher information

Noise amplitude

Figure 3. (a) Sub-threshold sinusoidal signal, S(¢), with
optimally-tuned added noise, &(z). Dots represent S(7) + &(¢);
a represents the threshold. Notice that S(¢) + &(f) > a most
often at the peaks of the signal oscillation and least often at
the troughs, transmitting the oscillation from the sub-
threshold signal into the probability of a supra-threshold
event. (b) Fisher information is maximal when noise is
optimal. Fisher information is the inverse of the asymptotic
variance of any regular estimator; in this case S(7) is
estimated from threshold crossings at each of many discrete
time points, 7, by S(1) =a — F'(1 - j), where j is the
estimate of the probability of a threshold crossing and F~ ' is
the inverse of the distribution function associated with the
probability density function of the noise [8].

w; and w,, near a common frequency, wy. For any
given coupling strength, there is a range of natural
frequency mismatch over which synchronisation may
take place. Figure 4 shows a plot of coupling strength,
¢, versus natural frequency difference, w;—w», that
illustrates this region of synchronisation, called an
Arnold tongue, for a range of coupling strengths and
an arbitrary oscillator. Very strong coupling, for
example the pendula of two clocks connected by a
metal bar, results in a single oscillator, and synchro-
nisation is no longer an issue. The boundary between
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weak and strong coupling is vague, but the indepen-
dence of the two systems is the usual criterion: if one
system ceases oscillating then the other should not be
forced also to cease.

Natural systems are noisy. This means that the
parameters of natural oscillators, such as neurons, vary
somewhat randomly and thus they cannot achieve
exact synchronisation (constant phase difference) for
any significant period of time. In particular, the phase
of natural oscillators exhibits phase diffusion, or
random perturbations, because of noise. Fortunately,
we can define average parameter values (average
period and thus average frequency) over relatively
long time periods, and speak of stochastic phase
locking, where because of phase diffusion we can only
identify a tendency for the phase difference to remain
bounded within a particular phase interval. Even when
we find evidence of stochastic phase locking, however,
in a very noisy system the noise will sometimes cause
large jumps of 27 in phase. These are called phase slips.
In this simple characterisation noise is a nuisance — it
only makes synchronisation more difficult.

Synchronised groups of neurons show some of the
characteristics of simple phase oscillators, like pendu-
lum clocks, and their synchronisation can be described
as above. Individual neurons, however, are more
usefully described as relaxation oscillators [10]. Relaxa-
tion oscillators display more complicated cycles than
simpler oscillators. In particular they display periods
of slow and fast motion within a single cycle, making
their cycles resemble a sequence of pulses. This is

Coupling strength, ¢

0
Frequency difference, o, - «,

Figure 4. Arnold tongue (or phase-locking region) in grey
for two independent, equally-mutually-coupled oscillators.
For a natural frequency difference approaching 0 the
required coupling strength approaches 0. Also notice that
as the coupling strength increases so does the frequency
difference over which phase locking can be achieved.
Asymmetric coupling yields asymmetric Arnold tongues
with the more influential oscillator producing a greater
shift toward its natural frequency.

exactly what the rhythm of a neuron looks like, with
action potentials, or spikes (fast), separated by periods
of slower buildup of potential toward the spike
threshold (caused by internal processes and also
by post-synaptic potentials). Interactions between
coupled neurons is usefully described by the infinite-
simal phase response curve (PRC), which depicts the
shift in phase, A(¢), and thus the shift in the moment
of firing the next spike, of one neuron caused by the
reception of a spike (resulting in a post-synaptic
potential) from another one as a function of the phase
of the receiving neuron [11]:

A() = 27r<1 T(T‘f’)> (1)

In Equation (1), it is assumed that time, ¢, is converted
to phase, ¢, by ¢ = 2nt/T where T is the time between
spikes, and 7(¢) is the revised time between spikes for
a given phase. PRCs can be measured empirically for
neurons and also computed from the equations of state
in various neuron models. Figure 5 displays an
example of a PRC of a generic neuron. Clearly there
is a preferred phase, near the end of each free-running
cycle just before a spike would naturally occur, at
which an incoming spike has the largest effect on the
phase of the neuron [12]. Moreover, both positive
(phase advance) and negative (phase retardation)
effects on phase can occur, depending on whether the
PRC is positive or negative when the input occurs.
This mechanism of phase perturbation can give rise to

+
I

o

PRC(¢) or intracellular voltage

o
-

Phase, ¢

Figure 5. Phase response curve (solid line) for a generic
neuron. The dashed line represents the average intracellular
voltage during the spike firing cycle, with the spike itself
divided between the beginning and the end of the cycle. Only
PRC scale is shown; intracellular voltage scale is not shown.
Based on a figure in Chapter 10 of [12], Izhikevich,
Dynamical Systems in Neuroscience: The Geometry of
Excitability and Bursting, MIT Press, 2007.
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synchronisation between neurons either by one neuron
driving another or by neurons mutually perturbing
each other’s phase. The Arnold tongues of synchroni-
sation regions for pairs of neurons and neuron models
can be computed from their PRCs and their periods
(see [12]).

Weak coupling within networks of oscillators
whose natural frequencies are fairly close together,
including oscillating neurons, gradually brings about
deviations of the natural oscillations until a substan-
tial, and possibly ever-changing, group of them is
synchronised. This state of affairs was first described
by Winfree (e.g. [13]), who also was the first to reduce
the equations of state of weakly perturbed oscillators
to a phase model, which is simply a differential
equation describing the oscillator’s change in phase
as the result of small perturbations. A canonical phase
model for a set of n weakly coupled oscillators looks
like this:

% — 1+ ¢ PRC(¢) hi(1), 2)

where h(f) represents the influence of the n—1 other
oscillators on the phase of oscillator i, with the
influence depending on its phase via the PRC. A
particularly useful analysis of synchronisation of a
fully coupled (mean field) network of oscillators was
given by Kuramoto [14] (see also ([12] chapter 10), for
a more detailed analysis of this and other models, and
[15] for its relation to other important problems). Such
analyses begin with the division of the oscillation into
two time scales, a fast one that represents the free-
running progression of the natural oscillation, and a
slow one that represents the collective effects of the rest
of the network on the phase:

¢i(l) =1+ @ (3)

where ¢ represents the fast scale of the free-running
oscillator, d¢;/dt = 1, and ¢; represents the slow-scale
phase deviation caused by the network. Kuramoto
analysed a special case where the influence of the
network on each oscillator is represented by its first
Fourier term. This results in a phase model for ¢, that
looks like

do;
dt

= w,; + Kr sin (Y — ¢,) (4)

where K is the coupling strength between the oscilla-
tors, and y is the population phase, that is, the average
phase of any synchronised cluster of oscillators of size
r. The w; are the natural frequencies of the oscillators,
which are randomly distributed over some range in this

model, and which pull each oscillator away from any
synchronised cluster. Kuramoto proved that in this
model synchronisation depends on the coupling
strength relative to the distribution of natural frequen-
cies, with larger synchronised clusters emerging and
persisting the stronger the coupling for a given
distribution of frequencies. Although not mean fields,
it is to be expected that networks of real neural
oscillators would display similar behaviour in the sense
that they would become synchronised via their mutual
coupling and would come to have a population
dynamic at a particular population frequency that
would reflect their natural and driven oscillation
frequencies.

4. Noise-mediated synchronisation

Consider now the behaviour of a group of oscillators
to which random noise is added. Pikovskii [16] appears
to have been the first to demonstrate that adding the
same random pulses to a set of non-interacting
oscillators can synchronise their phases. Although his
was a special case, more general formulations indicate
that his result extends to a broad class of non-
interacting limit cycle oscillators and to noise that is
only correlated across oscillators [17]. In the case of
correlated noise, the synchronising effect increases
linearly with the noise correlation. The mechanism by
which the synchronisation occurs is similar to that
described above for interacting oscillators. Noise
inputs disturb the phases of individual oscillators
according to their PRCs. If the PRCs are flat, then
each noise input simply shifts the phases of all of the
oscillators by the same amount, leaving their relation-
ship unchanged. If the PRCs have positive and
negative parts, however, as in Figure 4 and for most
limit cycle oscillators, then those oscillators for which
the input occurs in the positive PRC region, just before
spike onset in Figure 4, will have their phases
advanced, whereas those for which the input occurs
in a negative region of the PRC, after the spike in
Figure 4, will have their phases retarded, thus tending
to bring the overall group of phases closer together,
and thus inducing synchronisation. Once the phases
are clustered the noise inputs will have similar effects
on all of the oscillators, tending to maintain the
synchrony.

Since Pikovskii’s pioneering work noise-mediated
synchronisation has been studied extensively, and
synchronisation of a wide variety of oscillator net-
works, both coupled and uncoupled, and including
networks of neurons and of several different model
neurons, has been demonstrated (see [18] for a review).
In the case of networks of coupled oscillators there are
two sources for synchronising effects: the random noise
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(depending on correlation) and the inputs to each
oscillator from the others to which it is connected
(depending on connection strength). Inputs from either
source operate through the PRC and reinforce each
other, so that noise-induced synchronisation between
coupled oscillators, such as neurons, can be very
strong. An instructive example of noise-induced
synchronisation in a network of coupled model
neurons that also shows SR is the system of locally-
coupled Fitzhugh—Nagumo model neurons studied in
[19] (see also [20] for a precursor). Each model neuron,
n, obeys

“du(t,n) u’ ,

£ :ufgfw+ynz/k[u(t,n)fu(t,n)],

dw

wz u+ a(n) +dDV?E(1,n) (5)

where time is dimensionless and scaled so that u(z,n)
and w(z,n) are fast and slow variables, respectively, ¢ is
the ratio of the time scales, y is the coupling strength,
a(n) is the parameter controlling the excitatory
dynamics of the individual neurons, &(z,n) is zero-
mean Gaussian noise that is independent across
neurons, k and d are parameters that depend on the
network properties, and D represents noise strength.
For a(n) > 1.0 Equation (5) shows the characteristic
occasional spiking exhibited by real neurons. Neiman
and colleagues [19] showed that for a sufficiently strong
coupling, at an intermediate value of the noise variance
the network becomes coherent, not only for locally-
coupled nearby neurons but also for distant, not-
directly-coupled neurons. For smaller noise intensities
the network is correlated only locally, and for larger
noise intensities it is incoherent. Figure 6 shows an
example of their results. SR of synchronisation is
indicated because maximum synchrony occurs in an
intermediate noise condition, whereas such synchrony
is nonexistent when noise is absent, has only small,
local, effects when it is weak, and is destroyed by
strong noise.

5. Neural synchrony, perception, and cognition

Although synchronisation in neural networks is of
interest in its own right, its potential for a functional
role in animal, especially human, behaviour is what
makes its study exciting. The possibility of such a role
was dramatically enhanced by the finding that visual
stimuli induced synchronisation at about 40 Hz among
the responding neurons in the cat’s visual cortex [21].
Since that seminal work, it has become increasingly
well documented that gamma-frequency (30-50 Hz)
oscillations in mammalian sensory cortex are closely
associated with processing of sensory stimuli. For

Figure 6. Spiking activity (white pixels, non-spiking
neurons are black) in an array of Fitzhugh-Nagumo model
neurons at three successive time points (rows from top to
bottom). The centre column (intermediate noise level) shows
nearly completely synchronous spiking, both local and long-
distance, whereas the low noise condition at left shows only
local, wavelike synchrony and the high noise condition at
right displays a random pattern of spiking. Reprinted with
permission from [19]. © (1998) by the American Physical
Society.

example, human visual cortex responds in much the
same way to the onset of visual stimuli (e.g. [22]), as
does human auditory cortex [23]. It has been proposed
that these synchronised gamma-frequency oscillations
serve to bind together distributed neural representa-
tions of environmental stimuli [24]. The gamma-
frequency oscillation has also been suggested to
underlie perceptual awareness [24,25]. Thus, any
process such as SR that modulates such synchronisa-
tion could be very important in the understanding of
the way in which perceptual and cognitive processes,
and even consciousness itself, are implemented in the
brain.

Very good progress, too extensive to detail here, is
being made in the computational modelling of the role
of neural synchronisation in human and other animal
cognition. A good example is that of Borgers and
colleagues [26] on realistic, coupled neural networks
containing both excitatory and inhibitory neurons. It
turns out that several different mechanisms, some of
them quite subtle, could be involved in the suppression
of neural responses to distracting stimuli while attend-
ing to a focal stimulus, for example attending to a
particular face in a crowd. In their most recent work
Borgers and colleagues focus on the fact (e.g. [27]) that
neurons in V4 (a visual area in occipital cortex)
respond strongly to some visual stimuli at a particular
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place on the retina (their receptive field) and more
weakly but still positively to others. Interestingly, when
both a good and a bad stimulus are present in the
receptive field at the same time the overall response is
considerably weakened compared to that to the good
stimulus alone. But if the animal is induced to pay
attention to the good stimulus, then the response is just
about the same as if the latter were alone in the
receptive field — the weakening attributed to the bad
stimulus distractor is suppressed. In the neural net-
work model, which uses realistic (and noisy) models of
neurons, each inhibitory and excitatory neuron re-
ceives input from all other neurons, although the
network would work as well with sparse connectivity
as long as each excitatory neuron received input from
sufficient inhibitory neurons and vice versa [28]. Each
stimulus gives rise to a neural response similar to that
in Figure 7(b) when presented alone (to neurons 21-40
as in Figure 7(b), bottom, or to neurons 131-150, not
shown), resulting in synchronised gamma-frequency
oscillations among all of the inhibitory cells and
among the specific subpopulation of excitatory cells
stimulated. The response shown in Figure 7(a),
however, occurs when both stimuli are presented to
the network simultaneously. In this case, the inhibitory
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oscillations become desynchronised and the synchro-
nised excitatory response vanishes. Focusing attention
on one of the simultaneously presented stimuli is
modelled by bathing all neurons in inhibition and also
increasing deterministic drive to the stimulated neu-
rons by 30%, thus simulating both inhibitory and
excitatory effects of attention. This results in the
response shown in Figure 7(b). Synchronised gamma-
frequency oscillation is restored among the inhibitory
neurons and the response to the attended stimulus
emerges in the E-cells as if it were being presented
alone. Thus, synchronisation of neurons is closely
related to suppression of response to the unattended
stimulus as well as to the emergence of a response to
the competing attended stimulus, at least in such
models.

Neural synchronisation has been associated with a
related aspect of attention, orienting to a particular
spatial location, using electroencephalographic (EEG)
recordings of brain activity and some rather compli-
cated analyses [29]. In these experiments, which are
characteristic of modern cognitive neuroscience, hu-
man subjects perform carefully controlled tasks while
recordings are made of the associated activity in their
brains. Doesburg and colleagues [29] had subjects
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Figure 7. (a) Disrupted synchrony of gamma oscillations leads to weak response to input signal. Dots represent spikes in

cell x time graph. (b) Synchrony of gamma oscillations is restored, leading to robust response to input signal (bursts of
synchronised firing of E-cells 21-40 that received the signal). Reprinted with permission from [26]. © (2008) National Academy of
Sciences, USA.
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orient their attention, without moving their eyes, to a
particular location on a computer monitor in response
to a visual cue, at which appeared a subsequent target
to which the subjects had to respond. They then
analysed synchronisation between the recordings made
by various EEG electrodes while subjects were
performing this attention orienting task. They ensured
that the EEG time series (sampled at 500 Hz) were
related to brain regions near the electrode locations on
the scalp by first taking the Laplace transform (spatial
second derivative) of the data, yielding the scalp
current density. They then filtered the broadband
time series to produce narrow band signals from which
they calculated the analytic signal, defined for a
measured function of time, f(¢), as

<(1) = 1) +if(1) = A(D)exp i (1)], (6)

where f(l) means the Hilbert transform of f{7),
1) = Ipv. / &dr,
T ol —T

where i = (-1)"? and P.V. indicates the principle value
of this improper integral. The Hilbert transform shifts
the signal’s phase by n/2. For the narrow band signal
considered here, the analytic signal is analogous to
Euler’s identity, exp(i¢) = cos¢ + i sin¢, because f(7)
is sinusoidal and f{¢) is f(¢) phase-shifted by n/2. In
Equation (6), A(z) is the instantaneous envelope
amplitude of the signal and ¢(¢) is the instantaneous
phase, that is the amplitude and phase at each sample
point. Doesburg and colleagues computed an index of

B) Left cue 39 Hz

A) Left cue 300 ms

Right cue 39 Hz

100 260 300

Right cue 300 ms

phase locking across trials of the experiment, called the
phase locking value, PLV,

PLV,, =N Zexp {i[;(1) — ¢r(1)]}
N

for each pair of clectrodes. PLV ranges between 0,
where the phase difference between the signals at the
two electrodes varies randomly from trial to trial, to 1,
where it is constant across trials. Of course the phase
difference is never completely constant in such noisy
data, but the reliability of changes in average PLV
relative to a baseline can be ascertained using surrogate
statistics.

Figure 8 shows some of their results for gamma-
band synchronisation. There was a dramatic burst of
increased PLV between various electrodes around
300 ms after the cue was presented. This synchronisa-
tion was lateralised with respect to the direction in
which the cue was directing attention as is shown most
clearly in Figure 8(a). Here the right occipital cortex
locations synchronised with other brain regions when
the cue oriented attention to the left, and vice versa.
Doesburg and colleagues interpreted this burst of
lateralised but widespread gamma-band synchronisa-
tion as indicating the organisation of an attention
network to accomplish the required orienting to the
indicated location in visual space. More details about
such analyses of synchronisation in whole human
brains can be found in [30]. Moreover, substantial
work is now being directed at obtaining information
about synchronisation between the actual brain
regions that generate the scalp signals. This requires
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C) Left cue - second burst 39 Hz

Figure 8. Gamma-band phase locking between occipital cortex and other brain regions involved in attention orienting as a
function of time since a cue occurred. Black lines indicate significant increases in phase locking, and white lines indicate
decreases, relative to the period before cue onset. Reprinted from [29] with permission. © (2008) by Oxford University Press.
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making substantial assumptions about, and modelling
of, transmission of electrical and magnetic signals
through brain, skull, and scalp tissue, and so is riskier
but potentially more informative than the analyses just
described [31].

6. Stochastic-resonance-modulated neural synchrony

Given the research described so far, it seems plausible
both that neural synchronisation plays a role in
cognitive processes, and that SR plays a role in neural
synchronisation. It remains to put these two ideas
together. The first step is to demonstrate noise-induced
synchronisation in a real neural system, and an
excellent example is provided by the work of Mori
and Kai [32]. They recorded the electroencephalogram
(EEG) from the occipital cortex (visual) region of the
human skull while driving the closed right eye with
sub-threshold light flickering at 5 Hz (about % the
frequency of alpha, an endogenous brain rhythm
generated in occipital cortex), and the closed left eye
with randomly flickering (15 to 60 Hz) light at various
intensities. In this design the noise and the sub-
threshold stimulus mix in the visual system subsequent
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to stimulating the separate visual receptors. Mori and
Kai measured spectral power in the EEG at 10 Hz,
which indexes local entrainment, that is synchronisa-
tion, of 10 Hz neural oscillations to the sub-harmonic
5 Hz driving stimulus (which remember was also sub-
threshold). The critical result was that spectral power
at 10 Hz was maximal at a non-zero level of noise,
demonstrating SR in the human brain. Kitajo and
colleagues used a similar design to show that a sub-
threshold visual stimulus could also drive overt
behaviour, leading to the conjecture that the beha-
vioural driving occurred via noise-induced neural
synchronisation [33]. This conjecture was indirectly
tested by Kitajo and colleagues in another similar
experiment in which EEG was recorded while human
subjects detected near-threshold visual stimuli [34].
Global phase locking of signals across all EEG
electrodes in three different frequency bands was
greatest in the same, optimal noise, condition in which
performance was maximised, implying that the con-
jecture was correct (Figure 9).

A somewhat more direct test of the involvement of
SR in neural synchronisation relevant to cognition was
attempted by Ward and colleagues [35]. In their
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Figure 9. Neural synchrony across all EEG electrodes [(a) and (c¢)] is greatest for the same non-zero noise condition in which
performance was maximal (). NSD and Noise SD refer to the noise intensity, the standard deviation of the Gaussian noise
distribution. The colour scale is in standard deviation units of PLV relative to a pre-stimulus baseline. Reprinted with permission

from [34]. © (2007) by the Institute of Physics.
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experiment, EEG recordings were made while subjects
listened to two streams of near-threshold, brief, tonal
auditory stimuli, one to each ear. In each ear
occasional stimuli were more intense, and subjects
had to push a button whenever the more intense
stimuli occurred in the left ear (only). Auditory stimuli
of supra-threshold amplitude normally elicit a syn-
chronised response at around 40 Hz lasting about 100—
200 ms (or 4-8 cycles) from neurons in the auditory
cortex (just above the ear). The near-threshold stimuli
used in this experiment, however, would not be
expected to elicit such a response. Indeed, this
paradigm is often used to test the hearing ability of
people for whom making a verbal or other response is
not possible, for example young infants or people who
are unconscious or suspected of malingering. In this
experiment, however, in addition to the near-threshold
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tonal stimuli broadband auditory noise was also
presented to the left ear, at intensities ranging from 0
(no noise) to about 20 dB above the detection thresh-
old (Sensation Level, or SL) for the noise. Figure 10
shows some preliminary results from this experiment
that indicate that, as expected, there was no 40 Hz
response to the near-threshold stimuli in the absence of
added noise. For a small amount of added noise,
however, the transient 40 Hz response appeared,
indicating that the noise apparently caused increased
neural synchrony in response to the tone. A similar
result was obtained for near-threshold stimuli pre-
sented to the right ear in the absence of noise to that
ear, indicating that the left ear noise combined in the
brain with the right ear stimuli to produce a response.
This is functionally relevant neural synchrony, because
the 40 Hz response indicates neural activity to
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Figure 10. Transient 40 Hz response to near-threshold stimuli is greatest in a non-zero noise condition. Arrow points to the
40 Hz response in the noise = —5 dB SL condition. Colour code represents dB of spectral power relative to that in a 1000 ms

baseline immediately prior to stimulus onset [35].



22:51 18 February 2011

[B-on Consortium- 2007] At:

Downl oaded By:

Contemporary Physics 573

a detectable auditory stimulus. Thus, studies like this
one are beginning to make the case for a functionally
relevant modulation of neural synchrony by SR.

7. Conclusions

I have described evidence that noise plays a role in the
neural synchronisation that is associated with percep-
tual and cognitive processes. It seems that random
fluctuations can be helpful under some conditions, as
maintained by proponents of SR, and that one of the
arenas in which this role might be important is that of
neural networks, including those in the brain. This
story is far from complete, however. One especially
troublesome missing part is a definitive demonstration
that the noise that is intrinsic to networks of neurons,
indeed to any real system, can play a constructive role,
or that any living systems were in some way optimised
with respect to the ubiquitous noise in which they
evolved and that they themselves create. Interestingly,
calculations show that the foraging strategies of the
zooplankton Daphnia might have evolved to generate
an optimally noisy distribution of turning angles [36].
Also, preliminary attempts to measure intrinsic noise
in the human brain, and to relate its level to
performance, have had some success (e.g. [37,38]).
We can expect that such efforts will continue and that
many of the missing parts will be filled in, or the
hypothesis rejected, over the next several years. Even if
intrinsic noise and evolution play no significant part in
noise-mediated neural synchrony, however, external
noise can clearly play a role, and possibly lead to useful
applications in prosthetics and other areas.
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